Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Stem Cells Int ; 2019: 6096294, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30956672

RESUMEN

AIMS: Induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) have become a promising tool in cardiovascular safety pharmacology. Immaturity of iPS-CMs remains an ongoing concern. We compared electrophysiological and contractile features of cardiac bodies (hiPS-CBs) derived from human-induced pluripotent stem cells and human neonatal and infantile myocardial slices relevant for drug screening. METHODS AND RESULTS: Myocardial tissue slices were prepared from biopsies obtained from patients undergoing surgery for hypoplastic left heart syndrome (HLHS) and tetralogy of Fallot (TOF). Electrophysiological features and response to Ik,r blockade as well as contractile properties were investigated using microelectrodes and isometric force measurements and were compared to hiPS-CBs. Both native myocardial tissue slices as well as hiPS-CBs showed action potential prolongation after Ik,r blockade, but early afterdepolarisations could be observed in native myocardial tissue slices only. The force-frequency relationship (FFR) varied at lower frequencies and was negative throughout at higher frequencies in hiPS-CBs. In contrast, native myocardial tissue slices exhibited positive, negative, and biphasic FFRs. In contrast to native myocardial tissue slices, hiPS-CBs failed to show an inotropic response to ß-adrenergic stimulation. Although all groups showed ß-adrenergic induced positive lusitropy, the effect was more pronounced in myocardial tissue slices. CONCLUSION: hiPS-CBs were able to reproduce AP prolongation after Ik,r blockade, but to a lesser extent compared to human neonatal and infantile myocardial tissue slices. Early afterdepolarisations could not be induced in hiPS-CBs. Contractile force was differently regulated by ß-adrenergic stimulation in hiPS-CBs and the native myocardium. If used for cardiotoxicity screening, caution is warranted as hiPS-CBs might be less sensitive to pharmacologic targets compared to the native myocardium of neonates and infants.

2.
Stem Cells Int ; 2016: 2936126, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26880949

RESUMEN

Transplantation of stem cell-derived cardiomyocytes is one of the most promising therapeutic approaches after myocardial infarction, as loss of cardiomyocytes is virtually irreversible by endogenous repair mechanisms. In myocardial scars, transplanted cardiomyocytes will be in immediate contact with cardiac fibroblasts. While it is well documented how the electrophysiology of neonatal cardiomyocytes is modulated by cardiac fibroblasts of the same developmental stage, it is unknown how adult cardiac fibroblasts (aCFs) affect the function of embryonic stem cell-derived cardiomyocytes (ESC-CMs). To investigate the effects of aCFs on ESC-CM electrophysiology, we performed extra- and intracellular recordings of murine aCF-ESC-CM cocultures. We observed that spontaneous beating behaviour was highly irregular in aCF-ESC-CM cocultures compared to cocultures with mesenchymal stem cells (coefficient of variation of the interspike interval: 40.5 ± 15.2% versus 9.3 ± 2.0%, p = 0.008) and that action potential amplitude and maximal upstroke velocity (V max) were reduced (amplitude: 52.3 ± 1.7 mV versus 65.1 ± 1.5 mV, V max: 7.0 ± 1.0 V/s versus 36.5 ± 5.3 V/s), while action potential duration (APD) was prolonged (APD50: 25.6 ± 1.0 ms versus 16.8 ± 1.9 ms, p < 0.001; APD90: 52.2 ± 1.5 ms versus 43.3 ± 3.3 ms, p < 0.01) compared to controls. Similar changes could be induced by aCF-conditioned medium. We conclude that the presence of aCFs changes automaticity and induces potentially proarrhythmic changes of ESC-CM electrophysiology.

3.
Stem Cells Dev ; 23(6): 643-53, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24219308

RESUMEN

Induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) might become therapeutically relevant to regenerate myocardial damage. Purified iPS-CMs exhibit poor functional integration into myocardial tissue. The aim of this study was to investigate whether murine mesenchymal stem cells (MSCs) or their conditioned medium (MScond) improves the integration of murine iPS-CMs into myocardial tissue. Vital or nonvital embryonic murine ventricular tissue slices were cocultured with purified clusters of iPS-CMs in combination with murine embryonic fibroblasts (MEFs), MSCs, or MScond. Morphological integration was assessed by visual scoring and functional integration by isometric force and field potential measurements. We observed a moderate morphological integration of iPS-CM clusters into vital, but a poor integration into nonvital, slices. MEFs and MSCs but not MScond improved morphological integration of CMs into nonvital slices and enabled purified iPS-CMs to confer force. Coculture of vital slices with iPS-CMs and MEFs or MSCs resulted in an improved electrical integration. A comparable improvement of electrical coupling was achieved with the cell-free MScond, indicating that soluble factors secreted by MSCs were involved in electrical coupling. We conclude that cells such as MSCs support the engraftment and adhesion of CMs, and confer force to noncontractile tissue. Furthermore, soluble factors secreted by MSCs mediate electrical coupling of purified iPS-CM clusters to myocardial tissue. These data suggest that MSCs may increase the functional engraftment and therapeutic efficacy of transplanted iPS-CMs into infarcted myocardium.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/citología , Miocardio/citología , Miocitos Cardíacos/citología , Animales , Separación Celular , Células Cultivadas , Técnicas de Cocultivo , Medios de Cultivo Condicionados , Fibroblastos/citología , Ratones Endogámicos C57BL
4.
Stem Cells Dev ; 21(12): 2111-21, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22268955

RESUMEN

Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide the unique opportunity to study the very early development of the human heart. The aim of this study was to investigate the effect of calcium and beta-adrenergic stimulation on the contractile properties of early hESC-CMs. Beating clusters containing hESC-CMs were co-cultured in vitro with noncontractile slices of neonatal murine ventricles. After 5-7 days, when beating clusters had integrated morphologically into the damaged tissue, isometric force measurements were performed during spontaneous beating as well as during electrical field stimulation. Spontaneous beating stopped when extracellular calcium ([Ca²âº](ec)) was removed or after administration of the Ca²âº channel blocker nifedipine. During field stimulation at a constant rate, the developed force increased with incremental concentrations of [Ca²âº](ec). During spontaneous beating, rising [Ca²âº](ec) increased beating rate and developed force up to a [Ca²âº](ec) of 2.5 mM. When [Ca²âº](ec) was increased further, spontaneous beating rate decreased, whereas the developed force continued to increase. The beta-adrenergic agonist isoproterenol induced a dose-dependent increase of the frequency of spontaneous beating; however, it did not significantly change the developed force during spontaneous contractions or during electrical stimulation at a constant rate. Force developed by early hESC-CMs depends on [Ca²âº](ec) and on the L-type Ca²âº channel. The lack of an inotropic reaction despite a pronounced chronotropic response after beta-adrenergic stimulation most likely indicates immaturity of the sarcoplasmic reticulum. For cell-replacement strategies, further maturation of cardiac cells has to be achieved either in vitro before or in vivo after transplantation.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Cardiotónicos/farmacología , Células Madre Embrionarias/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Isoproterenol/farmacología , Contracción Miocárdica , Miocitos Cardíacos/fisiología , Animales , Calcio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Supervivencia Celular , Células Cultivadas , Técnicas de Cocultivo , Depresión Química , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Ratones de la Cepa 129 , Miocitos Cardíacos/efectos de los fármacos , Nifedipino/farmacología , Estimulación Química , Función Ventricular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA