Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Int Immunopharmacol ; 133: 112126, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38669946

RESUMEN

Type 17 helper T cells (Th17)-dominant neutrophilic airway inflammation is critical in the pathogenesis of steroid-resistant airway inflammation such as severe asthma. Small extracellular vesicles (sEV) derived from human mesenchymal stem cells (MSCs) display extensive therapeutic effects and advantages in many diseases. However, the role of MSC-sEV in Th17-dominant neutrophilic airway inflammation and the related mechanisms are still poorly studied. Here we found that MSC-sEV significantly alleviated the infiltration of inflammatory cells in peribronchial interstitial tissues and reduced levels of inflammatory cells, especially neutrophils, in bronchoalveolar lavage fluids (BALF) of mice with neutrophilic airway inflammation. Consistently, MSC-sEV significantly decreased levels of IL-17A in BALF and Th17 in lung tissues. Furthermore, we found that labelled MSC-sEV were taken up by human CD4+ T cells most obviously at 12 h after incubation, and distributed mostly in mouse lungs. More importantly, potential signaling pathways involved in the MSC-sEV mediated inhibition of Th17 polarization were found using RNA sequencing. Using Western blot, JAK2-STAT3 pathway was identified as an important role in the inhibition of Th17 polarization by MSC-sEV. We found that proteins in MSC-sEV were mostly involved in the therapeutic effects of MSC-sEV. In total, our study suggested that MSC-sEV could be a potential therapeutic strategy for the treatment of neutrophilic airway inflammation.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Neutrófilos , Factor de Transcripción STAT3 , Células Th17 , Células Th17/inmunología , Humanos , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo , Ratones , Neutrófilos/inmunología , Factor de Transcripción STAT3/metabolismo , Janus Quinasa 2/metabolismo , Interleucina-17/metabolismo , Pulmón/inmunología , Pulmón/patología , Ratones Endogámicos C57BL , Células Cultivadas , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/citología , Asma/inmunología , Asma/terapia , Masculino , Transducción de Señal , Femenino , Modelos Animales de Enfermedad
2.
Stem Cell Res Ther ; 14(1): 369, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093354

RESUMEN

BACKGROUNDS: Allergic airway inflammation is prevalent worldwide and imposes a considerable burden on both society and affected individuals. This study aimed to investigate the therapeutic advantages of mesenchymal stem cells (MSCs) overexpressed interleukin-10 (IL-10) for the treatment of allergic airway inflammation, as both IL-10 and MSCs possess immunosuppressive properties. METHODS: Induced pluripotent stem cell (iPSC)-derived MSCs were engineered to overexpress IL-10 via lentiviral transfection (designated as IL-10-MSCs). MSCs and IL-10-MSCs were administered intravenously to mice with allergic inflammation induced by ovalbumin (OVA), and the features of allergic inflammation including inflammatory cell infiltration, Th cells in the lungs, and T helper 2 cell (Th2) cytokine levels in bronchoalveolar lavage fluid (BALF) were examined. MSCs and IL-10-MSCs were co-cultured with CD4+ T cells from patients with allergic rhinitis (AR), and the levels of Th2 cells and corresponding type 2 cytokines were studied. RNA-sequence was performed to further investigate the potential effects of MSCs and IL-10-MSCs on CD4+ T cells. RESULTS: Stable IL-10-MSCs were established and characterised by high IL-10 expression. IL-10-MSCs significantly reduced inflammatory cell infiltration and epithelial goblet cell numbers in the lung tissues of mice with allergic airway inflammation. Inflammatory cell and cytokine levels in BALF also decreased after the administration of IL-10-MSCs. Moreover, IL-10-MSCs showed a stronger capacity to inhibit the levels of Th2 after co-cultured with CD4+ T cells from patients with AR. Furthermore, we elucidated lower levels of IL-5 and IL-13 in IL-10-MSCs treated CD4+ T cells, and blockade of IL-10 significantly reversed the inhibitory effects of IL-10-MSCs. We also reported the mRNA profiles of CD4+ T cells treated with IL-10-MSCs and MSCs, in which IL-10 played an important role. CONCLUSION: IL-10-MSCs showed positive effects in the treatment of allergic airway inflammation, providing solid support for the use of genetically engineered MSCs as a potential novel therapy for allergic airway inflammation.


Asunto(s)
Células Madre Mesenquimatosas , Rinitis Alérgica , Animales , Humanos , Ratones , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inflamación/terapia , Inflamación/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Pulmón , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos BALB C , Ovalbúmina
3.
Eur J Immunol ; 52(7): 1129-1140, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35415925

RESUMEN

Mesenchymal stromal cells (MSCs) are well known for their immunoregulatory roles on allergic inflammation particularly by acting on T cells, B cells, and dendritic cells (DCs). MSC-derived small extracellular vesicles (MSC-sEV) are increasingly considered as one of the main factors for the effects of MSCs on immune responses. However, the effects of MSC-sEV on DCs in allergic diseases remain unclear. MSC-sEV were prepared from the induced pluripotent stem cells (iPSC)-MSCs by anion-exchange chromatography, and were characterized with the size, morphology, and specific markers. Human monocyte-derived DCs were generated and cultured in the presence of MSC-sEV to differentiate the so-called sEV-immature DCs (sEV-iDCs) and sEV-mature DCs (sEV-mDCs), respectively. The phenotypes and the phagocytic ability of sEV-iDCs were analyzed by flow cytometry. sEV-mDCs were co-cultured with isolated CD4+ T cells or peripheral blood mononuclear cells (PBMCs) from patients with allergic rhinitis. The levels of Th1 and Th2 cytokines produced by T cells were examined by ELISA and intracellular flow staining. And the following mechanisms were further investigated. We demonstrated that MSC-sEV inhibited the differentiation of human monocytes to iDCs with downregulation of the expression of CD40, CD80, CD86, and HLA-DR, but had no effects on mDCs with these markers. However, MSC-sEV treatment enhanced the phagocytic ability of mDCs. More importantly, using anti-IL-10 monoclonal antibody or IL-10Rα blocking antibody, we identified that sEV-mDCs suppressed the Th2 immune response by reducing the production of IL-4, IL-9, and IL-13 via IL-10. Furthermore, sEV-mDCs increased the level of Treg cells. Our study identified that mDCs treated with MSC-sEV inhibited the Th2 responses, providing novel evidence of the potential cell-free therapy acting on DCs in allergic airway diseases.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Rinitis Alérgica , Diferenciación Celular , Células Cultivadas , Células Dendríticas , Humanos , Leucocitos Mononucleares , Células Madre Mesenquimatosas/metabolismo , Rinitis Alérgica/metabolismo , Rinitis Alérgica/terapia
4.
Front Immunol ; 12: 710372, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34691024

RESUMEN

Background: Allergic rhinitis (AR) is characterized by IgE-mediated mucosa response after exposure to allergens. Extracellular vesicles (EVs) are nano-size vesicles containing biological cargos for intercellular communications. However, the role of plasma EVs in pathogenesis of AR remains largely unknown. Methods: Plasma EVs from patients with AR were isolated, quantified, and characterized. The expression of Der p 1 and antigen-presenting molecules on EVs was determined by Western blot, flow cytometry, or ELISA. PKH26- and CFSE (carboxyfluorescein succinimidyl ester)-stained AR-EVs were used to determine the uptake of EVs by CD4+T cells and their effects on CD4+T cell proliferation, respectively. Results: Plasma EVs in healthy control (HC) and AR patients were similar in the concentration of particles, expression for specific EV markers, and both had structural lipid bilayer. However, the levels of Der p 1 on plasma EVs from both mild and moderate-severe AR patients were significantly higher than that on HC. The levels of antigen-presenting molecules on plasma EVs were similar from three subjects. Moreover, levels of Der p 1 on EVs in plasma, but not nasal secretion, were significantly associated with the symptom score of AR patients and level of plasma IL-13. Additionally, plasma EVs from patients with AR promoted the development of Th2 cells, while no effect was found on CD4+ T-cell proliferation. Conclusions: Plasma EVs derived from patients with AR exhibited antigen-presenting characteristics and promoted differentiation of Th2 cells, thus providing novel understanding of the pathogenesis of AR.


Asunto(s)
Presentación de Antígeno/inmunología , Vesículas Extracelulares/inmunología , Rinitis Alérgica/inmunología , Células Th2/citología , Adulto , Antígenos Dermatofagoides/sangre , Proteínas de Artrópodos/sangre , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular , Cisteína Endopeptidasas/sangre , Femenino , Humanos , Masculino , Índice de Severidad de la Enfermedad
5.
Stem Cells ; 39(7): 975-987, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33662168

RESUMEN

Group 2 innate lymphoid cells (ILC2s) are recognized as key controllers and effectors of type 2 inflammation. Mesenchymal stem cells (MSCs) have been shown to alleviate type 2 inflammation by modulating T lymphocyte subsets and decreasing TH 2 cytokine levels. However, the effects of MSCs on ILC2s have not been investigated. In this study, we investigated the potential immunomodulatory effects of MSCs on ILC2s in peripheral blood mononuclear cells (PBMCs) from allergic rhinitis patients and healthy subjects. We further investigated the mechanisms involved in the MSC modulation using isolated lineage negative (Lin- ) cells. PBMCs and Lin- cells were cocultured with induced pluripotent stem cell-derived MSCs (iPSC-MSCs) under the stimulation of epithelial cytokines IL-25 and IL-33. And the ILC2 levels and functions were examined and the possible mechanisms were investigated based on regulatory T (Treg) cells and ICOS-ICOSL pathway. iPSC-MSCs successfully decreased the high levels of IL-13, IL-9, and IL-5 in PBMCs in response to IL-25, IL-33, and the high percentages of IL-13+ ILC2s and IL-9+ ILC2s in response to epithelial cytokines were significantly reversed after the treatment of iPSC-MSCs. However, iPSC-MSCs were found directly to enhance ILC2 levels and functions via ICOS-ICOSL interaction in Lin- cells and pure ILC2s. iPSC-MSCs exerted their inhibitory effects on ILC2s via activating Treg cells through ICOS-ICOSL interaction. The MSC-induced Treg cells then suppressed ILC2s by secreting IL-10 in the coculture system. This study revealed that human MSCs suppressed ILC2s via Treg cells through ICOS-ICOSL interaction, which provides further insight to regulate ILC2s in inflammatory disorders.


Asunto(s)
Células Madre Mesenquimatosas , Linfocitos T Reguladores , Citocinas/metabolismo , Humanos , Inmunidad Innata , Ligando Coestimulador de Linfocitos T Inducibles/metabolismo , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Leucocitos Mononucleares , Linfocitos , Células Madre Mesenquimatosas/metabolismo , Linfocitos T Reguladores/metabolismo
6.
Cell Death Dis ; 11(6): 409, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483121

RESUMEN

Allergic airway inflammation is a major public health disease that affects up to 300 million people in the world. However, its management remains largely unsatisfactory. The dysfunction of pulmonary macrophages contributes greatly to the development of allergic airway inflammation. It has been reported that small extracellular vesicles derived from mesenchymal stromal cells (MSC-sEV) were able to display extensive therapeutic effects in some immune diseases. This study aimed to investigate the effects of MSC-sEV on allergic airway inflammation, and the role of macrophages involved in it. We successfully isolated MSC-sEV by using anion exchange chromatography, which were morphologically intact and positive for the specific EV markers. MSC-sEV significantly reduced infiltration of inflammatory cells and number of epithelial goblet cells in lung tissues of mice with allergic airway inflammation. Levels of inflammatory cells and cytokines in bronchoalveolar lavage fluid were also significantly decreased. Importantly, levels of monocytes-derived alveolar macrophages and M2 macrophages were significantly reduced by MSC-sEV. MSC-sEV were excreted through spleen and liver at 24 h post-administration in mice, and were able to be taken in by macrophages both in vivo and in vitro. In addition, proteomics analysis of MSC-sEV revealed that the indicated three types of MSC-sEV contained different quantities of proteins and shared 312 common proteins, which may be involved in the therapeutic effects of MSC-sEV. In total, our study demonstrated that MSC-sEV isolated by anion exchange chromatography were able to ameliorate Th2-dominant allergic airway inflammation through immunoregulation on pulmonary macrophages, suggesting that MSC-sEV were promising alternative therapy for allergic airway inflammation in the future.


Asunto(s)
Vesículas Extracelulares/metabolismo , Hipersensibilidad/inmunología , Hipersensibilidad/patología , Inmunomodulación , Inflamación/patología , Pulmón/patología , Macrófagos/patología , Células Madre Mesenquimatosas/metabolismo , Animales , Diferenciación Celular , Polaridad Celular , Vesículas Extracelulares/ultraestructura , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Inflamación/inmunología , Pulmón/inmunología , Macrófagos/metabolismo , Ratones Endogámicos BALB C , Modelos Biológicos , Proteoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA