Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Intervalo de año de publicación
1.
Oncol Rep ; 51(5)2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38577924

RESUMEN

Colorectal cancer (CRC) ranks as the second leading cause of cancer­related death worldwide due to its aggressive nature. After surgical resection, >50% of patients with CRC require adjuvant therapy. As a result, eradicating cancer cells with medications is a promising method to treat patients with CRC. In the present study, a novel compound was synthesized, which was termed compound 225#. The inhibitory activity of compound 225# against CRC was determined by MTT assay, EdU fluorescence labeling and colony formation assay; the effects of compound 225# on the cell cycle progression and apoptosis of CRC cells were detected by flow cytometry and western blotting; and the changes in autophagic flux after the administration of compound 225# were detected using the double fluorescence fusion protein mCherry­GFP­LC3B and western blotting. The results demonstrated that compound 225# exhibited antiproliferative properties, inhibiting the proliferation and expansion of CRC cell lines in a time­ and dose­dependent manner. Furthermore, compound 225# triggered G2/M cell cycle arrest by influencing the expression of cell cycle regulators, such as CDK1, cyclin A1 and cyclin B1, which is also closely related to the activation of DNA damage pathways. The cleavage of PARP and increased protein expression levels of PUMA suggested that apoptosis was triggered after treatment with compound 225#. Moreover, the increase in LC3­II expression and stimulation of autophagic flux indicated the activation of an autophagy pathway. Notably, compound 225# induced autophagy, which was associated with endoplasmic reticulum (ER) stress. In accordance with the in vitro findings, the in vivo results demonstrated that compound 225# effectively inhibited the growth of HCT116 tumors in mice without causing any changes in their body weight. Collectively, the present results demonstrated that compound 225# not only inhibited proliferation and promoted G2/M­phase cell cycle arrest and apoptosis, but also initiated cytoprotective autophagy in CRC cells by activating ER stress pathways. Taken together, these findings provide an experimental basis for the evaluation of compound 225# as a novel potential medication for CRC treatment.


Asunto(s)
Apoptosis , Neoplasias Colorrectales , Humanos , Animales , Ratones , Puntos de Control del Ciclo Celular , División Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Proliferación Celular , Línea Celular Tumoral , Ciclo Celular
2.
Molecules ; 29(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38257377

RESUMEN

A facile methodology for the construction of a complex heterocycle indazolo-fused quinoxalinone has been developed via an Ugi four-component reaction (U-4CR) followed by an intramolecular Ullmann reaction. The expeditious process features an operationally simple approach, time efficiency, and a broad substrate scope. Biological activity was evaluated and demonstrated that compound 6e inhibits human colon cancer cell HCT116 proliferation with an IC50 of 2.1 µM, suggesting potential applications for developing a drug lead in medicinal chemistry.


Asunto(s)
Neoplasias del Colon , Quinoxalinas , Humanos , Quinoxalinas/farmacología , Proliferación Celular , Química Farmacéutica
3.
Molecules ; 28(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37049976

RESUMEN

Colorectal cancer (CRC) is the most common intestinal malignancy, and nearly 70% of patients with this cancer develop metastatic disease. In the present study, we synthesized a novel compound, termed N-(3-(5,7-dimethylbenzo [d]oxazol-2-yl)phenyl)-5-nitrofuran-2-carboxamide (compound 275#), and found that it exhibits antiproliferative capability in suppressing the proliferation and growth of CRC cell lines. Furthermore, compound 275# triggered caspase 3-mediated intrinsic apoptosis of mitochondria and autophagy initiation. An investigation of the molecular mechanisms demonstrated that compound 275# induced intrinsic apoptosis, and autophagy initiation was largely mediated by increasing the levels of the intracellular accumulation of reactive oxygen species (ROS) in CRC cells. Taken together, these data suggest that ROS accumulation after treatment with compound 275# leads to mitochondria-mediated apoptosis and autophagy activation, highlighting the potential of compound 275# as a novel therapeutic agent for the treatment of CRC.


Asunto(s)
Apoptosis , Neoplasias Colorrectales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Mitocondrias/metabolismo , Autofagia , Neoplasias Colorrectales/patología , Proliferación Celular
4.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37047634

RESUMEN

Compound 6d, a spiroindoline compound, exhibits antiproliferative capability against cancer cell lines. However, the exact underlying mechanism of this compound-mediated inhibitory capability remains unclear. Here, we showed that compound 6d is an inhibitor of Bcl-2, which suppresses CRC growth by inducing caspase 3-mediated intrinsic apoptosis of mitochondria. Regarding the underlying mechanism, we identified HDAC6 as a direct substrate for caspase 3, and caspase 3 activation induced by compound 6d directly cleaves HDAC6 into two fragments. Moreover, the cleavage site was located at D1088 in the DMAD-S motif HDAC6. Apoptosis stimulated by compound 6d promoted autophagy initiation by inhibiting interaction between Bcl-2 and Beclin 1, while it led to the accumulation of ubiquitinated proteins and the reduction of autophagic flux. Collectively, our findings reveal that the Bcl-2-caspase 3-HDAC6 cascade is a crucial regulatory pathway of autophagy and identify compound 6d as a novel lead compound for disrupting the balance between apoptosis and autophagy.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Neoplasias Colorrectales , Humanos , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/fisiología , Beclina-1/genética , Caspasa 3/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Histona Desacetilasa 6 , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
5.
Molecules ; 28(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36838936

RESUMEN

In this study, 2-benzyl-10a-(1H-pyrrol-2-yl)-2,3-dihydropyrazino[1,2-a]indole-1,4,10(10aH)-trione (DHPITO), a previously identified inhibitor against hepatocellular carcinoma cells, is shown to exert its cytotoxic effects by suppressing the proliferation and growth of CRC cells. An investigation of its molecular mechanism confirmed that the cytotoxic activity of DHPITO is mediated through the targeting of microtubules with the promotion of subsequent microtubule polymerisation. With its microtubule-stabilising ability, DHPITO also consistently arrested the cell cycle of the CRC cells at the G2/M phase by promoting the phosphorylation of histone 3 and the accumulation of EB1 at the cell equator, reduced the levels of CRC cell migration and invasion, and induced cellular apoptosis. Furthermore, the compound could suppress both tumour size and tumour weight in a CRC xenograft model without any obvious side effects. Taken together, the findings of the present study reveal the antiproliferative and antitumour mechanisms through which DHPITO exerts its activity, indicating its potential as a putative chemotherapeutic agent and lead compound with a novel structure.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Humanos , Línea Celular Tumoral , Tubulina (Proteína)/metabolismo , Puntos de Control del Ciclo Celular , Apoptosis , Moduladores de Tubulina/farmacología , Microtúbulos , Antineoplásicos/farmacología , Neoplasias Colorrectales/metabolismo , Proliferación Celular
6.
Eur J Med Chem ; 240: 114565, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35797901

RESUMEN

Triple-negative breast cancer (TNBC) with the absence of estrogen receptor (ER), progesterone receptor (PR) and HER2 ptotein, is the highly aggressive subtype of breast cancer that exhibits poor prognosis and high tumor recurrence. It is vital to develop effective agents regulating the core molecular pathway of TNBC. Through a medium throughput screening and iterative medicinal chemistry optimization, we identified compound 7h as an autophagic flux inhibitor, which showed potent activities against human TNBC (MDA-MB-231 and MDA-MB-468) cell lines with IC50 values of 8.3 µM, and 6.0 µM, respectively, which are comparable to the potency of 5-FU and Cisplatin, the first line therapies for TNBC. Extensive investigation of mechanisms of action indicated that 7h inhibits autophagic flux and sequential accumulation of p62, leading to DNA damage and disrepair in TNBC cells. Importantly, nuclear p62 accumulation induced by compound 7h results in the inhibition of RNF168-mediated chromatin ubiquitination and the degradation of HR-related proteins in regulating the DNA damage response (DDR) process. In in vivo studies, compound 7h completely suppressed tumor growth in the MDA-MB-231 xenograft model at a dose of 15 mg/kg/q.d. Our findings indicate that compound 7h is an autophagic flux inhibitor and induced the degradation of HR-related proteins. Compound 7h could be potentially developed as an anti-cancer therapeutics for TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Autofagia , Bencimidazoles/farmacología , Bencimidazoles/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Humanos , Imidazoles/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Ubiquitina-Proteína Ligasas
7.
Biol Res ; 54(1): 27, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34488902

RESUMEN

BACKGROUND: Demethylzeylasteral (T-96) is a pharmacologically active triterpenoid monomer extracted from Tripterygium wilfordii Hook F (TWHF) that has been reported to exhibit anti-neoplastic effects against several types of cancer cells. However, the potential anti-tumour effects of T-96 against human Prostate cancer (CaP) cells and the possible underlying mechanisms have not been well studied. RESULTS: In the current study, T-96 exerted significant cytotoxicity to CaP cells in vitro and induced cell cycle arrest at S-phase in a dose-dependent manner. Mechanistically, T-96 promoted the initiation of autophagy but inhibited autophagic flux by inducing ROS-mediated endoplasmic reticulum (ER) stress which subsequently activated the extrinsic apoptosis pathway in CaP cells. These findings implied that T-96-induced ER stress activated the caspase-dependent apoptosis pathway to inhibit proliferation of CaP cells. Moreover, we observed that T-96 enhances the sensitivity of CaP cells to the chemotherapeutic drug, cisplatin. CONCLUSIONS: Taken together, our data demonstrated that T-96 is a novel modulator of ER stress and autophagy, and has potential therapeutic applications against CaP in the clinic.


Asunto(s)
Autofagia , Neoplasias de la Próstata , Apoptosis , Línea Celular Tumoral , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Especies Reactivas de Oxígeno , Triterpenos
8.
Oncol Rep ; 45(3): 1261-1272, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33469671

RESUMEN

Glioblastoma (GBM) is an aggressive malignancy with a high rate of tumor recurrence after treatment with conventional therapies. Parthenolide (PTL), a sesquiterpene lactone extracted from the herb Tanacetum parthenium or feverfew, possesses anticancer properties against a wide variety of solid tumors. In the present study, a series of PTL derivatives were synthesized and screened. An inhibitor, dimethylaminoparthenolide (DMAPT)­D6, a derivative of the PTL prodrug DMAPT in which the hydrogen of the dimethylamino group is substituted for the isotope deuterium, induced significant cytotoxicity in GBM cells in vitro and induced cell cycle arrest at the S­phase in a dose­dependent manner. Furthermore, mechanistic investigation indicated that through increasing the levels of intracellular accumulation of reactive oxygen species (ROS), DMAPT­D6 triggered DNA damage and finally death receptor­mediated extrinsic apoptosis in GBM cells, suggesting that DNA damage induced by DMAPT­D6 initiated caspase­dependent apoptosis to remove damaged GBM cells. Taken together, these data suggested that ROS accumulation following treatment with DMAPT­D6 results in DNA damage, and thus, death­receptor­mediated apoptosis, highlighting the potential of DMAPT­D6 as a novel therapeutic agent for the treatment of GBM.


Asunto(s)
Daño del ADN/efectos de los fármacos , Deuterio/administración & dosificación , Glioblastoma/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Sesquiterpenos/administración & dosificación , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinogénesis/patología , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Deuterio/química , Glioblastoma/genética , Glioblastoma/patología , Humanos , Receptores de Muerte Celular/metabolismo , Sesquiterpenos/química , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
9.
Biol. Res ; 54: 27-27, 2021. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1505815

RESUMEN

BACKGROUND: Demethylzeylasteral (T-96) is a pharmacologically active triterpenoid monomer extracted from Tripterygium wilfordii Hook F (TWHF) that has been reported to exhibit anti-neoplastic effects against several types of cancer cells. However, the potential anti-tumour effects of T-96 against human Prostate cancer (CaP) cells and the possible underlying mechanisms have not been well studied. RESULTS: In the current study, T-96 exerted significant cytotoxicity to CaP cells in vitro and induced cell cycle arrest at S-phase in a dose-dependent manner. Mechanistically, T-96 promoted the initiation of autophagy but inhibited autophagic flux by inducing ROS-mediated endoplasmic reticulum (ER) stress which subsequently activated the extrinsic apoptosis pathway in CaP cells. These findings implied that T-96-induced ER stress activated the caspase-dependent apoptosis pathway to inhibit proliferation of CaP cells. Moreover, we observed that T-96 enhances the sensitivity of CaP cells to the chemotherapeutic drug, cisplatin. CONCLUSIONS: Taken together, our data demonstrated that T-96 is a novel modulator of ER stress and autophagy, and has potential therapeutic applications against CaP in the clinic.


Asunto(s)
Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Autofagia , Triterpenos , Especies Reactivas de Oxígeno , Apoptosis , Línea Celular Tumoral
10.
Onco Targets Ther ; 13: 10111-10121, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33116593

RESUMEN

BACKGROUND: Breast cancer exhibits poor prognosis and high relapse rates following chemotherapy therapeutics. Thus, this study aims to develop effective novel agents regulating the core molecular pathway of breast cancer such as Wnt/ß-catenin signaling. METHODS: The present study screened a novel inhibitor, called "C188", using MTT assay. The molecular formula of C188 is C21H15FN4O3 and the molecular weight is 390. Flow cytometry and Western blotting were employed to assess cell cycle arrest after treatment with C188. Wound-healing and transwell assays were applied to measure the cell migration and invasion viability. The regulatory effects of C188 on Wnt/ß­catenin signaling and localization of ß­catenin in the nucleus were investigated by Western blotting and immunofluorescence. RESULTS: We found that C188 significantly suppressed proliferation and growth in a dose- and time-dependent manner in breast cancer cells, but not in normal breast cells. The inhibitory effect was caused by cell cycle arrest at the G1-phase which is induced by C188 treatment. Additionally, C188 dramatically inhibited cell migration of breast cancer cells in a dose-dependent manner. The migration inhibition was attributed to the suppression of Wnt/ß­catenin signaling and localization of ß­catenin in the nucleus mediated by regulating phosphorylation of ß­catenin and its subsequent stability. Furthermore, the target genes, including Axin 2, c-JUN, and c-Myc, were downregulated due to the decrease of ß­catenin in the nucleus after exposure to C188. CONCLUSION: C188 treatment resulted in the downregulation of cyclin D which led to cell cycle arrest at the G1 phase, and the inhibition of cell migration, indicating that C188 may be an effective novel therapeutic candidate as a potential treatment for human breast cancer.

11.
Chem Commun (Camb) ; 56(14): 2194-2197, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-31971170

RESUMEN

An Ugi, novel pseudo-Knoevenagel, ring expansion cascade reaction was discovered and utilized for the synthesis of aziridinyl succinimides in one-pot. Subsequently, densely functionalized aziridines and maleimides have been designed and synthesized through similar cascade reactions. The target compounds were prepared by means of a mild reaction and a simple operation procedure, which could be applicable to a broad scope of starting materials. This series of novel cascade reactions generates opportunities for the tailored synthesis of a wide range of biologically active scaffolds through tuneable Ugi inputs. Discovery of compound 8i with comparable potency to sorafenib in liver cancer cell lines could provide a new avenue for liver cancer drug discovery.


Asunto(s)
Antineoplásicos/farmacología , Aziridinas/farmacología , Maleimidas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Aziridinas/síntesis química , Aziridinas/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Maleimidas/síntesis química , Maleimidas/química , Estructura Molecular
12.
Molecules ; 24(15)2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31357480

RESUMEN

We have previously shown that compound-7g inhibits colorectal cancer cell proliferation and survival by inducing cell cycle arrest and PI3K/AKT/mTOR pathway blockage. However, whether it has the ability to exert antitumor activity in other cancer cells and what is the exact molecular mechanism for its antiproliferation effect remained to be determined. In the present study, compound-7g exhibited strong activity in suppressing proliferation and growth of glioblastoma cells. The inhibitor selectively downregulated F-box protein SKP2 expression and upregulated cell cycle inhibitor p27, and then resulted in G1 cell cycle arrest. Mechanism analysis revealed that compound-7g also provokes the down-regulation of E2F-1, which acts as a transcriptional factor of SKP2. Further results indicated that compound-7g induced an increase of LC3B-II and p62, which causes a suppression of fusion between autophagosome and lysosome. Moreover, compound-7g mediated autophagic flux blockage promoted accumulation of ubiquitinated proteins and then led to endoplasmic reticulum stress. Our study thus demonstrated that pharmacological inactivation of E2F-1-SKP2-p27 axis is a promising target for restricting cancer progression.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Bencimidazoles/química , Isoquinolinas/química , Proteínas Quinasas Asociadas a Fase-S/genética , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Factor de Transcripción E2F1/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Proteolisis
13.
Front Pharmacol ; 9: 1419, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30555332

RESUMEN

Androgen receptor (AR) plays a critical role in the development and progression of prostate cancer (PCa). Current antiandrogen therapies induce resistant mutations at the hormone binding pocket (HBP) that convert the activity of these agents from antagonist to agonist. Thus, there is a high unmet medical need for the development of novel antiandrogens which circumvent mutation-based resistance. Herein, through the analysis of AR structures with ligands binding to the activation function-2 (AF2) site, we built a combined pharmacophore model. In silico screening and the subsequent biological evaluation lead to the discovery of the novel lead compound IMB-A6 that binds to the AF2 site, which inhibits the activity of either wild-type (WT) or resistance mutated ARs. Our work demonstrates structure-based drug design is an efficient strategy to discover new antiandrogens, and provides a new class of small molecular antiandrogens for the development of novel treatment agents against PCa.

14.
Cancer Cell Int ; 18: 90, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29988358

RESUMEN

BACKGROUND: Recent studies showed that benzimidazoleisoquinolinone derivatives exhibit anticancer activity against human cancer cell lines. The aim of this study is to evaluate the anti-tumor effects and mechanisms of benzimidazoleisoquinolinones in isocitrate dehydrogenase-wildtype subtype of human glioblastoma (GBM) cells. METHODS: Human U87 and LN229 cell lines were used to perform the experiments. MTT was applied to screen the effective small molecular inhibitors suppressing growth of GBM cells. Colony formation and BrdU staining assays were performed to assess the inhibition effect of compound-1H on the proliferation of GBM cells. The cell cycle and apoptosis were measured by flow cytometry and western blot to analyze the changes of the relative protein expressions and their signal pathways. RESULTS: Compound-1H could suppress GBM cells in a time- and dose-dependent manner. Treatment of compound-1H could arrest cell cycle in S phase through up-regulating P21 and P53, and down-regulating cyclin A and E in a dose-dependent manner. Compound-1H also induced mitochondrial-dependent apoptosis by increasing Bax, cleaved caspase-3, cleaved caspase-9 and poly ADP-ribose polymerase expression, and decreasing Bcl-2 expression. Moreover, phosphorylated (p)-AKT and p-ERK levels relating to cell proliferation were dramatically decreased in U87 and LN229 cells. CONCLUSIONS: Our results suggest that it is the first time to report the compound-1H with benzimidazoleisoquinolinone core playing antitumor activity in human glioblastoma cells by inhibiting Raf/MEK/ERK and PI3K/AKT signaling pathways, and it could be as a lead compound for the further development of targeted glioblastoma cancer therapy.

15.
Bioorg Med Chem ; 26(14): 3899-3908, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29921474

RESUMEN

Colorectal cancer (CRC) is one of the most frequent, malignant gastrointestinal tumors, and strategies and effectiveness of current therapy are limited. A series of benzimidazole-isoquinolinone derivatives (BIDs) was synthesized and screened to identify novel scaffolds for CRC. Of the compounds evaluated, 7g exhibited the most promising anti-cancer properties. Employing two CRC cell lines, SW620 and HT29, 7g was found to suppress growth and proliferation of the cell lines at a concentration of ∼20 µM. Treatment followed an increase in G2/M cell cycle arrest, which was attributed to cyclin B1 and cyclin-dependent kinase 1 (CDK1) signaling deficiencies with simultaneous enhancement in p21 and p53 activity. In addition, mitochondrial-mediated apoptosis was induced in CRC cells. Interestingly, 7g decreased phosphorylated AKT, mTOR and 4E-BP1 levels, while promoting the expression/stability of PTEN. Since PTEN controls input into the PI3K/AKT/mTOR pathway, antiproliferative effects can be attributed to PTEN-mediated tumor suppression. Collectively, these results suggest that BIDs exert antitumor activity in CRC by impairing PI3K/AKT/mTOR signaling. Against a small kinase panel, 7g exhibited low affinity at 5 µM suggesting anticancer properties likely stem through a non-kinase mechanism. Because of the novelty of BIDs, the structure can serve as a lead scaffold to design new CRC therapies.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Bencimidazoles/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Isoquinolinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Bencimidazoles/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/patología , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Isoquinolinas/química , Estructura Molecular , Relación Estructura-Actividad
16.
Chemistry ; 24(26): 6732-6736, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29676029

RESUMEN

A post-Ugi diastereoselective one-pot cascade reaction requiring no metal catalyst was developed. The reaction scope was wide with mild conditions and good yields. A collection of spiroindolines was prepared by the protocol and screening tests in several difficult-to-inhibit cancer cell lines were conducted. The relationship of structure and anticancer activities was promising and in the Huh7 cell lines compound 16 j is more potent than Vinbalstine. The cyclization design strategy could be applicable to other multicomponent reactions (MCRs) for synthesizing bioactive and drug-like heterocycles.


Asunto(s)
Antineoplásicos/química , Indoles/química , Compuestos de Espiro/química , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Ciclización , Humanos , Indoles/síntesis química , Indoles/farmacología , Metales/química , Conformación Molecular , Estereoisomerismo
17.
Yi Chuan ; 37(12): 1175-84, 2015 12.
Artículo en Chino | MEDLINE | ID: mdl-26704942

RESUMEN

Adipose tissues play a critical role in the regulation of energy metabolism and homeostasis, and is also an important endocrine organ. Adipocyte differentiation is a complicated physiological process during which mesenchymal stem cells differentiate into adipocytes. This process is synergistically regulated by a large number of transcription factors, hormones and signaling pathway molecules. As a class of endogenous non-coding RNA (ncRNA), microRNAs (miRNAs) regulate gene expression mainly through post-transcriptional translational repression. In recent years, numerous studies have demonstrated that miRNA could have an impact on adipocyte differentiation and adipogenesis by modulating the expression levels of several adipogenic transcription factors and key signaling molecules. In this review, we summarize the mechanism of miRNA in regulating the differentiation of white/brown/beige adipocytes and the relevant signaling pathways and key factors, in the hope of providing theoretical guidance and new thoughts for treating obesity and other metabolic diseases.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis , Regulación de la Expresión Génica , MicroARNs/metabolismo , Adipocitos/citología , Animales , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , MicroARNs/síntesis química , MicroARNs/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA