Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell Commun Signal ; 22(1): 33, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38217003

RESUMEN

BACKGROUND: Spinal cord ischemia‒reperfusion injury (SCIRI) can lead to paraplegia, which leads to permanent motor function loss. It is a disastrous complication of surgery and causes tremendous socioeconomic burden. However, effective treatments for SCIRI are still lacking. PANoptosis consists of three kinds of programmed cell death, pyroptosis, apoptosis, and necroptosis, and may contribute to ischemia‒reperfusion-induced neuron death. Previous studies have demonstrated that hydrogen sulfide (H2S) exerts a neuroprotective effect in many neurodegenerative diseases. However, whether H2S is anti-PANoptosis and neuroprotective in the progression of acute SCIRI remains unclear. Thus, in this study we aimed to explore the role of H2S in SCIRI and its underlying mechanisms. METHODS: Measurements of lower limb function, neuronal activity, microglia/macrophage function histopathological examinations, and biochemical levels were performed to examine the efficacy of H2S and to further demonstrate the mechanism and treatment of SCIRI. RESULTS: The results showed that GYY4137 (a slow-releasing H2S donor) treatment attenuated the loss of Nissl bodies after SCIRI and improved the BBB score. Additionally, the number of TUNEL-positive and cleaved caspase-3-positive cells was decreased, and the upregulation of expression of cleaved caspase-8, cleaved caspase-3, Bax, and Bad and downregulation of Bcl-2 expression were reversed after GYY4137 administration. Meanwhile, both the expression and activation of p-MLKL, p-RIP1, and p-RIP3, along with the number of PI-positive and RIP3-positive neurons, were decreased in GYY4137-treated rats. Furthermore, GYY4137 administration reduced the expression of NLRP3, cleaved caspase-1 and cleaved GSDMD, decreased the colocalization NeuN/NLRP3 and Iba1/interleukin-1ß-expressing cells, and inhibited proinflammatory factors and microglia/macrophage polarization. CONCLUSIONS: H2S ameliorated spinal cord neuron loss, prevented motor dysfunction after SCIRI, and exerted a neuroprotective effect via the inhibition of PANoptosis and overactivated microglia-mediated neuroinflammation in SCIRI.


Asunto(s)
Sulfuro de Hidrógeno , Morfolinas , Fármacos Neuroprotectores , Compuestos Organotiofosforados , Daño por Reperfusión , Ratas , Animales , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/uso terapéutico , Sulfuro de Hidrógeno/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Caspasa 3/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Médula Espinal/metabolismo , Médula Espinal/patología , Apoptosis , Daño por Reperfusión/complicaciones , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo
2.
Signal Transduct Target Ther ; 7(1): 46, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35169126

RESUMEN

Metastasis and recurrence account for 95% of deaths from nasopharyngeal carcinoma (NPC). Cancer stem cells (CSCs) are regarded as one of the main reasons for tumor cell resistance to clinical therapy, and cancer metastasis or recurrence, while little is known about CSCs in NPC. The present study uncovers a subpopulation of cells labeled as CD45-EPCAM+PROCR+ in NPC biopsy samples that exhibit stem cell-like characteristics. A relatively low number of these cells initiate xenograft tumors in mice. Functional analysis reveals that protein C receptor (PROCR) not only serves as a stem cell marker in NPC, but also maintains tumor cells' stemness potential through regulating lipid metabolism and mitochondrial fission. Epistatic studies reveal that cAMP-protein kinase A stimulates Ca2+ release to manipulate lipid metabolism related genes' expression. Finally, in a cohort of 207 NPC samples, PROCR expression is correlated with tumor metastasis or recurrence, and predicts poor prognosis. These novel findings link PROCR labeled CSCs with lipid metabolism and mitochondrial plasticity, and provides new clinical target against metastatic or recurrent NPC.


Asunto(s)
Receptor de Proteína C Endotelial , Lípidos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Células Madre Neoplásicas , Receptor de Proteína C Endotelial/metabolismo , Humanos , Lípidos/biosíntesis , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
4.
Leukemia ; 34(12): 3348-3358, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32694618

RESUMEN

Hematopoietic stem cell (HSC) utilizes its quiescence feature to combat exhaustion for lifetime blood cell supply. To date, how certain chromatin architecture and subsequent transcription profile permit HSC quiescence remains unclear. Here, we show an essential role of chromatin remodeler zinc finger HIT-type containing 1 (Znhit1) in maintaining HSC quiescence. We find that loss of Znhit1 leads to exhaustion of stem cell pool and impairment of hematopoietic function. Mechanically, Znhit1 determines the chromatin accessibility at distal enhancers of HSC quiescence genes, including Pten, Fstl1, and Klf4, for sustained transcription and consequent PI3K-Akt signaling inhibition. Moreover, Znhit1-Pten-PI3K-Akt axis also participates in controlling myeloid expansion and B-lymphoid specification. Our findings therefore identify a dominant role of Znhit1-mediated chromatin remodeling in preserving HSC function for hematopoietic homeostasis.


Asunto(s)
Proteínas Portadoras/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/fisiología , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Cromatina/metabolismo , Cromatina/fisiología , Ensamble y Desensamble de Cromatina/fisiología , Hematopoyesis/fisiología , Factor 4 Similar a Kruppel , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología
5.
J Biomed Sci ; 27(1): 30, 2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32005234

RESUMEN

BACKGROUND: The main strategy against nasopharyngeal carcinoma (NPC) is radiotherapy. However, radioresistance mediated recurrence is a leading clinical bottleneck in NPC. Revealing the mechanism of NPC radioresistance will help improve the therapeutic effect. METHODS: In this study, the role of TRIM21 (tripartite motif-containing 21) in NPC receiving ionizing radiation was firstly examined both in vivo and in vitro. Mass spectrometry analysis was performed to identify the downstream targets of TRIM21. NPC cells with TRIM21 or SERPINB5 (serpin family B member 5) overexpression or knockout were used to determine the epistatic relationship among SERPINB5, GMPS (guanine monophosphate synthase) and TRIM21. Flow cytometry, co-immunoprecipitation, western blot and immunofluorescence were employed to strengthen the results. Finally, immunohistochemistry using 4 radiosensitive and 8 radioresistent NPC patient samples was perform to examine the association between SERPINB5 or GMPS expression and patient radio-sensitivity. RESULTS: As an E3 ligase, TRIM21 was highly expressed in NPC. After ionizing radiation, TRIM21 repressed TP53 expression by mediating GMPS ubiquitination and degradation. Overexpression of TRIM21 protected NPC cells from radiation mediated cell apoptosis in vitro and in vivo. Further analysis revealed that TRIM21 mediated GMPS repression was dependent on SERPINB5, and SERPINB5 served as an adaptor which prevented GMPS from entering into the nucleus and introduced TRIM21 for GMPS ubiquitination. Moreover, the in vitro and in vivo results validated the finding that SERPINB5 promoted NPC cell radioresistance, and the radioresistant patients had higher SERPINB5 expression. CONCLUSIONS: Overall, our data showed that TRIM21-SERPINB5-mediated GMPS degradation facilitated TP53 repression, which promoted the radioresistance of NPC cells. This novel working model related to TP53 suppression provided new insight into NPC radioresistence clinically.


Asunto(s)
Apoptosis , Carcinoma Nasofaríngeo/metabolismo , Ribonucleoproteínas/genética , Serpinas/genética , Proteína p53 Supresora de Tumor/genética , Apoptosis/efectos de la radiación , Línea Celular Tumoral , Humanos , Ribonucleoproteínas/metabolismo , Serpinas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
6.
J Mol Cell Biol ; 12(5): 359-371, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31565729

RESUMEN

Bromodomain-containing proteins are known readers of histone acetylation that regulate chromatin structure and transcription. Although the functions of bromodomain-containing proteins in development, homeostasis, and disease states have been well studied, their role in self-renewal of hematopoietic stem and progenitor cells (HSPCs) remains poorly understood. Here, we performed a chemical screen using nine bromodomain inhibitors and found that the bromodomain and PHD finger-containing protein 1 (Brpf1) inhibitor OF-1 enhanced the expansion of Lin-Sca-1+c-Kit+ HSPCs ex vivo without skewing their lineage differentiation potential. Importantly, our results also revealed distinct functions of Brpf1 isoforms in HSPCs. Brpf1b promoted the expansion of HSPCs. By contrast, Brpf1a is the most abundant isoform in adult HSPCs but enhanced HSPC quiescence and decreased the HSPC expansion. Furthermore, inhibition of Brpf1a by OF-1 promoted histone acetylation and chromatin accessibility leading to increased expression of self-renewal-related genes (e.g. Mn1). The phenotypes produced by OF-1 treatment can be rescued by suppression of Mn1 in HSPCs. Our findings demonstrate that this novel bromodomain inhibitor OF-1 can promote the clinical application of HSPCs in transplantation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Madre Adultas/citología , Proteínas de Unión al ADN/metabolismo , Células Madre Hematopoyéticas/citología , Acetilación , Células Madre Adultas/metabolismo , Animales , Secuencia de Bases , Diferenciación Celular , Proliferación Celular , Autorrenovación de las Células/genética , Células Cultivadas , Cromatina/metabolismo , Femenino , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Histonas/metabolismo , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Isoformas de Proteínas/metabolismo
7.
Cell Death Dis ; 9(12): 1169, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518868

RESUMEN

Nasopharyngeal carcinoma (NPC) progression is regulated by genetic, epigenetic, and epitranscript modulation. As one of the epitranscript modifications, the role of N6-Methyladenosine (m6A) has not been elucidated in NPC. In the present study, we found that the poorly methylated gene ZNF750 (encoding zinc finger protein 750) was downregulated in NPC tumor tissues and cell lines. Ectopic expression of ZNF750 blocked NPC growth in vitro and in vivo. Further studies revealed that m6A modifications maintained the low expression level of ZNF750 in NPC. Chromatin immunoprecipitation sequencing identified that ZNF750 directly regulated FGF14 (encoding fibroblast growth factor 14), ablation of which reversed ZNF750's tumor repressor effect. Moreover, the ZNF750-FGF14 signaling axis inhibited NPC growth by promoting cell apoptosis. These findings uncovered the critical role of m6A in NPC, and stressed the regulatory function of the ZNF750-FGF14 signaling axis in modulating NPC progression, which provides theoretical guidance for the clinical treatment of NPC.


Asunto(s)
Adenosina/análogos & derivados , Epigénesis Genética , Factores de Crecimiento de Fibroblastos/genética , Regulación Neoplásica de la Expresión Génica , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Factores de Transcripción/genética , Adenosina/metabolismo , Animales , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Metilación de ADN , Progresión de la Enfermedad , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Ratones Desnudos , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/mortalidad , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/mortalidad , Neoplasias Nasofaríngeas/patología , Transducción de Señal , Análisis de Supervivencia , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Exp Hematol ; 51: 1-6.e2, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28456747

RESUMEN

During development, hematopoietic stem cells (HSCs) undergo a rapid expansion in the fetal liver (FL) after their emergence in the aorta-gonad-mesonephros (AGM) region. We recently reported that the endolysosomal trafficking factor BLOS2, encoded by the Bloc1s2 gene, regulates HSC/hematopoietic progenitor cell emergence in the AGM region; however, whether it plays a role in the FL remains unknown. Here, we show that BLOS2 plays an essential role in the regulation of HSC proliferation and differentiation in the FL. Bloc1s2 depletion leads to elevated Notch signaling, with an increased frequency but weakened self-renewal ability of FL HSCs. Functional assays show that Bloc1s2-/- FL HSCs harbor impaired lymphoid and myeloid differentiation abilities. These findings reveal that balanced control of Notch signaling by BLOS2 is required for HSC homeostasis during FL hematopoiesis.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Feto/embriología , Células Madre Hematopoyéticas/metabolismo , Hígado/embriología , Proteínas/metabolismo , Receptores Notch/metabolismo , Animales , Feto/citología , Hematopoyesis Extramedular/fisiología , Células Madre Hematopoyéticas/citología , Humanos , Hígado/citología , Ratones , Ratones Noqueados , Proteínas/genética , Receptores Notch/genética
10.
Elife ; 52016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27719760

RESUMEN

Notch signaling plays a crucial role in controling the proliferation and differentiation of stem and progenitor cells during embryogenesis or organogenesis, but its regulation is incompletely understood. BLOS2, encoded by the Bloc1s2 gene, is a shared subunit of two lysosomal trafficking complexes, biogenesis of lysosome-related organelles complex-1 (BLOC-1) and BLOC-1-related complex (BORC). Bloc1s2-/- mice were embryonic lethal and exhibited defects in cortical development and hematopoiesis. Loss of BLOS2 resulted in elevated Notch signaling, which consequently increased the proliferation of neural progenitor cells and inhibited neuronal differentiation in cortices. Likewise, ablation of bloc1s2 in zebrafish or mice led to increased hematopoietic stem and progenitor cell production in the aorta-gonad-mesonephros region. BLOS2 physically interacted with Notch1 in endo-lysosomal trafficking of Notch1. Our findings suggest that BLOS2 is a novel negative player in regulating Notch signaling through lysosomal trafficking to control multiple stem and progenitor cell homeostasis in vertebrates.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células Madre Hematopoyéticas/fisiología , Células-Madre Neurales/fisiología , Proteínas/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal , Animales , Ratones Endogámicos C57BL/embriología , Ratones Noqueados , Pez Cebra/embriología
11.
Curr Opin Hematol ; 23(1): 18-22, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26554888

RESUMEN

PURPOSE OF REVIEW: Inflammatory signaling under pathological conditions like infection and inflammation has been extensively studied. Whether inflammatory signaling plays a role in physiology and development remains elusive. The review summarizes recent advances in inflammatory signaling with particular focus on how distinct inflammatory signaling regulates hematopoietic stem cell (HSC) development. Understanding the underlying mechanism of inflammatory signaling on HSC development may help to generate and/or expand a large number of functional HSCs for clinical application. RECENT FINDINGS: Like the hematopoietic progenitors, HSCs can be the first responders to infection. An unexpected observation is that genes involved in innate immunity and inflammatory signaling are enriched in emerging HSCs and their niche during embryogenesis. Thus, inflammatory signaling may also play a role in HSC development in the absence of infection and inflammation. SUMMARY: Inflammatory signaling is not only an important regulator of HSCs in response to infection, but also plays a previously unrecognized role in HSC development in the absence of infection and inflammation. The baseline inflammatory signaling can be activated to promote HSC development in cell autonomous and noncell autonomous manners. However, direct response of HSCs to inflammatory stimuli is not always advantageous and excessive chronic signaling can have negative effects on HSC regulation and function.


Asunto(s)
Diferenciación Celular , Hematopoyesis , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Inflamación/metabolismo , Transducción de Señal , Animales , Comunicación Celular , Humanos , Estrés Fisiológico
12.
Mol Cell Biochem ; 412(1-2): 1-10, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26590986

RESUMEN

Normal human embryonic stem cells (hESCs) can develop neoplastic cancer stem cell (CSC) properties after coculture with transformed hESCs in vitro. In the present study, the influence of the tumor microenvironment on malignant transformation of bone marrow stromal cells (BMSCs) was studied after allografting a mixture of enhanced green fluorescent protein (EGFP)-labeled BMSCs and C6 glioma cells into the rat brain to understand the influence of the cellular environment, especially the tumor environment, on the transformation of grafted BMSCs in the rat brain. We performed intracerebral transplantation in the rat brain using EGFP-labeled BMSCs coinjected with C6 tumor cells. After transplantation, the EGFP-labeled cells were isolated from the tumor using fluorescence-activated cell sorting, and the characteristics of the recovered cells were investigated. Glioma-specific biomarkers of the sorted cells and the biological characteristics of the tumors were analyzed. The BMSCs isolated from the cografts were transformed into glioma CSCs, as indicated by the marked expression of the glioma marker GFAP in glioma cells, and of Nestin and CD133 in neural stem cells and CSCs, as well as rapid cell growth, decreased level of the tumor suppressor gene p53, increased level of the oncogene murine double minute gene 2 (MDM2), and recapitulation of glioma tissues in the brain. These data suggest that BMSCs can be transformed into CSCs, which can be further directed toward glioma formation under certain conditions, supporting the notion that the tumor microenvironment is involved in transforming normal BMSCs into glial CSCs.


Asunto(s)
Neoplasias Encefálicas/patología , Transformación Celular Neoplásica , Glioma/patología , Células Madre Mesenquimatosas/patología , Animales , Línea Celular Tumoral , Femenino , Proteínas Fluorescentes Verdes/genética , Masculino , Ratas , Ratas Sprague-Dawley , Microambiente Tumoral
13.
Cell Res ; 25(10): 1093-107, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26358189

RESUMEN

In vertebrates, embryonic hematopoietic stem and progenitor cells (HSPCs) are derived from a subset of endothelial cells, the hemogenic endothelium (HE), through the endothelial-to-hematopoietic transition (EHT). Notch signaling is essential for HSPC development during embryogenesis across vertebrates. However, whether and how it regulates EHT remains unclear. Here, we show that G protein-coupled receptor 183 (Gpr183) signaling serves as an indispensable switch for HSPC emergence by repressing Notch signaling before the onset of EHT. Inhibition of Gpr183 significantly upregulates Notch signaling and abolishes HSPC emergence. Upon activation by its ligand 7α-25-OHC, Gpr183 recruits ß-arrestin1 and the E3 ligase Nedd4 to degrade Notch1 in specified HE cells and then facilitates the subsequent EHT. Importantly, 7α-25-OHC stimulation promotes HSPC emergence in vivo and in vitro, providing an attractive strategy for enhancing the in vitro generation of functional HSPCs.


Asunto(s)
Hemangioblastos/citología , Células Madre Hematopoyéticas/citología , Receptor Notch1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/fisiología , Animales , Arrestinas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Hemangioblastos/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Ubiquitina-Proteína Ligasas Nedd4 , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , beta-Arrestinas
14.
Dev Cell ; 34(6): 621-31, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26300447

RESUMEN

T lymphoid-primed progenitors are hematopoietic progenitors destined to enter the thymus. The in vivo characterization of these embryonic progenitors is challenging, however, due to the intrauterine development of mouse embryos. Thus, how the fate of these cells is determined has not been fully defined in mammals. Here we use zebrafish embryos to show that the homing of T lymphoid-primed progenitors to the thymus is impaired, concomitant with a decrease in ccr9a expression, in the absence of irf4a. Strikingly, fate mapping assays at the single-cell level showed a fate change of irf4a-deficient T lymphoid-primed progenitors to myeloid cells, accompanied by an increase in Pu.1 expression. These data indicate that in addition to regulating ccr9a expression, Irf4a is essential in T lymphoid-primed progenitors for repressing Pu.1 expression to prevent an alternate fate. Our findings provide insight into the fate determination mechanism of T lymphoid-primed progenitors.


Asunto(s)
Linaje de la Célula , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Epítopos de Linfocito T/fisiología , Factores Reguladores del Interferón/metabolismo , Células Mieloides/citología , Células Madre/citología , Pez Cebra/crecimiento & desarrollo , Animales , Western Blotting , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Técnicas para Inmunoenzimas , Factores Reguladores del Interferón/genética , Ratones , Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
15.
Blood ; 125(7): 1098-106, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25540193

RESUMEN

Inflammatory signaling has been shown to be essential for stress hematopoiesis in adult bone marrow, either through increasing proliferation or by directing differentiation of hematopoietic stem and progenitor cells (HSPCs) toward myeloid or lymphoid lineages. However, its role in embryonic normal hematopoiesis has been unknown. Here, we demonstrate that in both zebrafish and mouse embryos, inflammatory signaling is necessary and sufficient for HSPC emergence, in the absence of infection or pathological inflammation. Mechanistically, inflammatory signaling regulates hemogenic endothelium-derived HSPC development through a conserved Toll-like receptor 4 (TLR4)-nuclear factor κ-light-chain enhancer of activated B core (NF-κB) signaling, which then promotes Notch activity, a well-known signal required for HSPC specification in vertebrates. Our findings establish a previously unrecognized link between inflammatory signaling and HSPC emergence, and provide new insights into regenerative medicine and novel therapies to treat innate immune-related diseases.


Asunto(s)
Hematopoyesis/fisiología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/fisiología , Mediadores de Inflamación/fisiología , Animales , Animales Modificados Genéticamente , Diferenciación Celular/efectos de los fármacos , Embrión de Mamíferos , Embrión no Mamífero , Hematopoyesis/efectos de los fármacos , Inflamación/metabolismo , Mediadores de Inflamación/farmacología , Masculino , Ratones , FN-kappa B/metabolismo , Transducción de Señal/inmunología , Receptor Toll-Like 4/metabolismo , Pez Cebra
16.
Nat Commun ; 5: 3431, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24614941

RESUMEN

The earliest HSCs are derived from haemogenic endothelium via endothelial-to-haematopoietic transition during vertebrate embryogenesis; however, the underlying mechanism is largely unclear. Here we show that interplay of Smad1/5 and ERK signalling is essential for haemogenic endothelium-based HSC emergence. Smad1/5 directly inhibits erk expression through recruiting HDAC1 to and inducing de-acetylation of the erk promoter in endothelial cells. Over-activated ERK signalling conferred by inhibition of Smad1/5 promotes the arterial endothelial cell fate and constitutively strengthens the tight junction between endothelial cells, thereby repressing the specification of haemogenic endothelium and the following endothelial-to-haematopoietic transition process. These findings provide new insights into the in vitro generation of transplantable HSCs for potential clinical applications.


Asunto(s)
Embrión no Mamífero/metabolismo , Células Madre Hematopoyéticas/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Proteína Smad1/genética , Proteína Smad5/genética , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Western Blotting , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Células Endoteliales/metabolismo , Células Endoteliales/ultraestructura , Endotelio Vascular/citología , Endotelio Vascular/embriología , Endotelio Vascular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hematopoyesis/genética , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Hibridación in Situ , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Microscopía Electrónica de Transmisión , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
17.
Cell Res ; 23(12): 1356-68, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24165894

RESUMEN

Previous studies on developmental hematopoiesis have mainly focused on signaling and transcription factors, while the appreciation of epigenetic regulation including that of microRNAs is recent. Here, we show that in zebrafish and mouse, miR-142-3p is specifically expressed in hematopoietic stem cells (HSCs). Knockdown of miR-142a-3p in zebrafish led to a reduced population of HSCs in the aorta-gonad-mesonephros (AGM) region as well as T-cell defects in the thymus. Mechanistically, miR-142a-3p regulates HSC formation and differentiation through the repression of interferon regulatory factor 7 (irf7)-mediated inflammation signaling. Finally, we show that miR-142-3p is also involved in the development of HSCs in mouse AGM, suggesting that it has a highly conserved role in vertebrates. Together, these findings unveil the pivotal roles that miR-142a-3p plays in the formation and differentiation of HSCs by repressing irf7 signaling.


Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , MicroARNs/metabolismo , Regiones no Traducidas 3' , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Subunidad alfa 2 del Factor de Unión al Sitio Principal/antagonistas & inhibidores , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Embrión de Mamíferos/metabolismo , Embrión no Mamífero/metabolismo , Células HEK293 , Humanos , Factor 7 Regulador del Interferón/antagonistas & inhibidores , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/metabolismo , Ratones , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Óxido Nítrico/metabolismo , Oligonucleótidos Antisentido/metabolismo , Interferencia de ARN , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA