Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS One ; 18(12): e0295291, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38060597

RESUMEN

Aflatoxin B1 (AFB1), with the strong toxicity and carcinogenicity, has been reported to great toxicity to the liver and other organs of animals. It cause huge economic losses to breeding industry, including the aquaculture industry. Chinese mitten crabs (Eriocheir sinensis), as one of important species of freshwater aquaculture in China, are deeply disturbed by it. However, the molecular and metabolic mechanisms of hepatopancreas and ovary in crabs underlying coping ability are still unclear. Hence, we conducted targeted injection experiment with or without AFB1, and comprehensively analyzed transcriptome and metabolomics of hepatopancreas and ovary. As a result, 210 and 250 DEGs were identified in the L-C vs. L-30 m and L-C vs. L-60 m comparison, among which 14 common DEGs were related to six major functional categories, including antibacterial and detoxification, ATP energy reaction, redox reaction, nerve reaction, liver injury repair and immune reaction. A total of 228 and 401 DAMs in the ML-C vs. ML-30 m and ML-C vs. ML-60 m comparison both enriched 12 pathways, with clear functions of cutin, suberine and wax biosynthesis, tyrosine metabolism, purine metabolism, nucleotide metabolism, glycine, serine and threonine metabolism, ABC transporters and tryptophan metabolism. Integrated analysis of metabolomics and transcriptome in hepatopancreas discovered three Co-enriched pathways, including steroid biosynthesis, glycine, serine and threonine metabolism, and sphingolipid metabolism. In summary, the expression levels and functions of related genes and metabolites reveal the regulatory mechanism of Chinese mitten crab (Eriocheir sinensis) adaptability to the Aflatoxin B1, and the findings contribute to a new perspective for understanding Aflatoxin B1 and provide some ideas for dealing with it.


Asunto(s)
Braquiuros , Transcriptoma , Animales , Femenino , Aflatoxina B1/toxicidad , Aflatoxina B1/metabolismo , Fitomejoramiento , Glicina/metabolismo , Serina/metabolismo , Treonina/metabolismo , Braquiuros/genética , Hepatopáncreas/metabolismo
2.
BMC Biol ; 20(1): 200, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36100845

RESUMEN

BACKGROUND: Interspecific postzygotic reproduction isolation results from large genetic divergence between the subgenomes of established hybrids. Polyploidization immediately after hybridization may reset patterns of homologous chromosome pairing and ameliorate deleterious genomic incompatibility between the subgenomes of distinct parental species in plants and animals. However, the observation that polyploidy is less common in vertebrates raises the question of which factors restrict its emergence. Here, we perform analyses of the genome, epigenome, and gene expression in the nascent allotetraploid lineage (2.95 Gb) derived from the intergeneric hybridization of female goldfish (Carassius auratus, 1.49 Gb) and male common carp (Cyprinus carpio, 1.42 Gb), to shed light on the changes leading to the stabilization of hybrids. RESULTS: We firstly identify the two subgenomes derived from the parental lineages of goldfish and common carp. We find variable unequal homoeologous recombination in somatic and germ cells of the intergeneric F1 and allotetraploid (F22 and F24) populations, reflecting high plasticity between the subgenomes, and rapidly varying copy numbers between the homoeolog genes. We also find dynamic changes in transposable elements accompanied by genome merger and duplication in the allotetraploid lineage. Finally, we observe the gradual decreases in cis-regulatory effects and increases in trans-regulatory effects along with the allotetraploidization, which contribute to increases in the symmetrical homoeologous expression in different tissues and developmental stages, especially in early embryogenesis. CONCLUSIONS: Our results reveal a series of changes in transposable elements, unequal homoeologous recombination, cis- and trans-regulations (e.g. DNA methylation), and homoeologous expression, suggesting their potential roles in mediating adaptive stabilization of regulatory systems of the nascent allotetraploid lineage. The symmetrical subgenomes and homoeologous expression provide a novel way of balancing genetic incompatibilities, providing a new insight into the early stages of allopolyploidization in vertebrate evolution.


Asunto(s)
Carpas , Cyprinidae , Animales , Cyprinidae/genética , Elementos Transponibles de ADN , Hibridación Genética , Poliploidía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA