Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
NAR Cancer ; 5(3): zcad045, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37636316

RESUMEN

Androgen receptor (AR) inhibition is standard of care for advanced prostate cancer (PC). However, efficacy is limited by progression to castration-resistant PC (CRPC), usually due to AR re-activation via mechanisms that include AR amplification and structural rearrangement. These two classes of AR alterations often co-occur in CRPC tumors, but it is unclear whether this reflects intercellular or intracellular heterogeneity of AR. Resolving this is important for developing new therapies and predictive biomarkers. Here, we analyzed 41 CRPC tumors and 6 patient-derived xenografts (PDXs) using linked-read DNA-sequencing, and identified 7 tumors that developed complex, multiply-rearranged AR gene structures in conjunction with very high AR copy number. Analysis of PDX models by optical genome mapping and fluorescence in situ hybridization showed that AR residing on extrachromosomal DNA (ecDNA) was an underlying mechanism, and was associated with elevated levels and diversity of AR expression. This study identifies co-evolution of AR gene copy number and structural complexity via ecDNA as a mechanism associated with endocrine therapy resistance.

2.
Cancers (Basel) ; 15(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37568598

RESUMEN

Glioblastoma is one of the most devastating neoplasms of the central nervous system. This study focused on the development of serum extracellular vesicle (EV)-based glioblastoma tumor marker panels that can be used in a clinic to diagnose glioblastomas and to monitor tumor burden, progression, and regression in response to treatment. RNA sequencing studies were performed using RNA isolated from serum EVs from both patients (n = 85) and control donors (n = 31). RNA sequencing results for preoperative glioblastoma EVs compared to control EVs revealed 569 differentially expressed genes (DEGs, 2XFC, FDR < 0.05). By using these DEGs, we developed serum-EV-based biomarker panels for the following glioblastomas: wild-type IDH1 (96% sensitivity/80% specificity), MGMT promoter methylation (91% sensitivity/73% specificity), p53 gene mutation (100% sensitivity/89% specificity), and TERT promoter mutation (89% sensitivity/100% specificity). This is the first study showing that serum-EV-based biomarker panels can be used to diagnose glioblastomas with a high sensitivity and specificity.

3.
J Pathol ; 260(3): 289-303, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37186300

RESUMEN

Breast cancer invasion and metastasis result from a complex interplay between tumor cells and the tumor microenvironment (TME). Key oncogenic changes in the TME include aberrant synthesis, processing, and signaling of hyaluronan (HA). Hyaluronan-mediated motility receptor (RHAMM, CD168; HMMR) is an HA receptor enabling tumor cells to sense and respond to this aberrant TME during breast cancer progression. Previous studies have associated RHAMM expression with breast tumor progression; however, cause and effect mechanisms are incompletely established. Focused gene expression analysis of an internal breast cancer patient cohort confirmed that increased RHAMM expression correlates with aggressive clinicopathological features. To probe mechanisms, we developed a novel 27-gene RHAMM-related signature (RRS) by intersecting differentially expressed genes in lymph node (LN)-positive patient cases with the transcriptome of a RHAMM-dependent model of cell transformation, which we validated in an independent cohort. We demonstrate that the RRS predicts for poor survival and is enriched for cell cycle and TME-interaction pathways. Further analyses using CRISPR/Cas9-generated RHAMM-/- breast cancer cells provided direct evidence that RHAMM promotes invasion in vitro and in vivo. Immunohistochemistry studies highlighted heterogeneous RHAMM protein expression, and spatial transcriptomics associated the RRS with RHAMM-high microanatomic foci. We conclude that RHAMM upregulation leads to the formation of 'invasive niches', which are enriched in RRS-related pathways that drive invasion and could be targeted to limit invasive progression and improve patient outcomes. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Ácido Hialurónico/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Receptores de Hialuranos/metabolismo , Microambiente Tumoral
4.
Cancers (Basel) ; 14(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36230572

RESUMEN

The hairless (HR) gene encodes a transcription factor with histone demethylase activity that is essential for development and tissue homeostasis. Previous studies suggest that mutational inactivation of HR promotes tumorigenesis. To investigate HR mutations in breast cancer, we performed targeted next-generation sequencing using DNA isolated from primary breast cancer tissues. We identified HR somatic mutations in approximately 15% of the patient cohort (n = 85), compared with 23% for BRCA2, 13% for GATA3, 7% for BRCA1, and 3% for PTEN in the same patient cohort. We also found an average 23% HR copy number loss in breast cancers. In support of HR's antitumor functions, HR reconstitution in HR-deficient human breast cancer cells significantly suppressed tumor growth in orthotopic xenograft mouse models. We further demonstrated that HR's antitumor activity was at least partly mediated by transcriptional activation of CELF2, a tumor suppressor with RNA-binding activity. Consistent with HR's histone demethylase activity, pharmacologic inhibition of histone methylation suppressed HR-deficient breast cancer cell proliferation, migration and tumor growth. Taken together, we identified HR as a novel tumor suppressor that is frequently mutated in breast cancer. We also showed that pharmacologic inhibition of histone methylation is effective in suppressing HR-deficient breast tumor growth and progression.

5.
Oncogene ; 40(43): 6166-6179, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34535769

RESUMEN

The transcription factors PAX5, IKZF1, and EBF1 are frequently mutated in B cell acute lymphoblastic leukemia (B-ALL). We demonstrate that compound heterozygous loss of multiple genes critical for B and T cell development drives transformation, including Pax5+/-xEbf1+/-, Pax5+/-xIkzf1+/-, and Ebf1+/-xIkzf1+/- mice for B-ALL, or Tcf7+/-xIkzf1+/- mice for T-ALL. To identify genetic defects that cooperate with Pax5 and Ebf1 compound heterozygosity to initiate leukemia, we performed a Sleeping Beauty (SB) transposon screen that identified cooperating partners including gain-of-function mutations in Stat5b (~65%) and Jak1 (~68%), or loss-of-function mutations in Cblb (61%) and Myb (32%). These findings underscore the role of JAK/STAT5B signaling in B cell transformation and demonstrate roles for loss-of-function mutations in Cblb and Myb in transformation. RNA-Seq studies demonstrated upregulation of a PDK1>SGK3>MYC pathway; treatment of Pax5+/-xEbf1+/- leukemia cells with PDK1 inhibitors blocked proliferation in vitro. In addition, we identified a conserved transcriptional gene signature between human and murine leukemias characterized by upregulation of myeloid genes, most notably involving the GM-CSF pathway, that resemble a B cell/myeloid mixed-lineage leukemia. Thus, our findings identify multiple mechanisms that cooperate with defects in B cell transcription factors to generate either progenitor B cell or mixed B/myeloid-like leukemias.


Asunto(s)
Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Factores de Transcripción/genética , Transposasas/genética , Animales , Mutación con Ganancia de Función , Pruebas Genéticas , Humanos , Mutación con Pérdida de Función , Ratones , Factor de Transcripción PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Análisis de Secuencia de ARN , Transducción de Señal , Transactivadores/genética
6.
Mol Ther Nucleic Acids ; 21: 1006-1016, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32818920

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a lethal, autosomal dominant neurodegenerative disease caused by a polyglutamine expansion in the ATAXIN-1 (ATXN1) protein. Preclinical studies demonstrate the therapeutic efficacy of approaches that target and reduce Atxn1 expression in a non-allele-specific manner. However, studies using Atxn1-/- mice raise cautionary notes that therapeutic reductions of ATXN1 might lead to undesirable effects such as reduction in the activity of the tumor suppressor Capicua (CIC), activation of the protease ß-secretase 1 (BACE1) and subsequent increased amyloidogenic cleavage of the amyloid precursor protein (APP), or a reduction in hippocampal neuronal precursor cells that would impact hippocampal function. Here, we tested whether an antisense oligonucleotide (ASO)-mediated reduction of Atxn1 produced unwanted effects involving BACE1, CIC activity, or reduction in hippocampal neuronal precursor cells. Notably, no effects on BACE1, CIC tumor suppressor function, or number of hippocampal neuronal precursor cells were found in mice subjected to a chronic in vivo ASO-mediated reduction of Atxn1. These data provide further support for targeted reductions of ATXN1 as a therapeutic approach for SCA1.

7.
Cancer Res ; 80(20): 4335-4345, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32747365

RESUMEN

Multiple studies have identified transcriptome subtypes of high-grade serous ovarian carcinoma (HGSOC), but their interpretation and translation are complicated by tumor evolution and polyclonality accompanied by extensive accumulation of somatic aberrations, varying cell type admixtures, and different tissues of origin. In this study, we examined the chronology of HGSOC subtype evolution in the context of these factors using a novel integrative analysis of absolute copy-number analysis and gene expression in The Cancer Genome Atlas complemented by single-cell analysis of six independent tumors. Tumor purity, ploidy, and subclonality were reliably inferred from different genomic platforms, and these characteristics displayed marked differences between subtypes. Genomic lesions associated with HGSOC subtypes tended to be subclonal, implying subtype divergence at later stages of tumor evolution. Subclonality of recurrent HGSOC alterations was evident for proliferative tumors, characterized by extreme genomic instability, absence of immune infiltration, and greater patient age. In contrast, differentiated tumors were characterized by largely intact genome integrity, high immune infiltration, and younger patient age. Single-cell sequencing of 42,000 tumor cells revealed widespread heterogeneity in tumor cell type composition that drove bulk subtypes but demonstrated a lack of intrinsic subtypes among tumor epithelial cells. Our findings prompt the dismissal of discrete transcriptome subtypes for HGSOC and replacement by a more realistic model of continuous tumor development that includes mixtures of subclones, accumulation of somatic aberrations, infiltration of immune and stromal cells in proportions correlated with tumor stage and tissue of origin, and evolution between properties previously associated with discrete subtypes. SIGNIFICANCE: This study infers whether transcriptome-based groupings of tumors differentiate early in carcinogenesis and are, therefore, appropriate targets for therapy and demonstrates that this is not the case for HGSOC.


Asunto(s)
Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Femenino , Perfilación de la Expresión Génica , Inestabilidad Genómica , Humanos , Ploidias , Análisis de la Célula Individual
8.
Clin Cancer Res ; 26(8): 1965-1976, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31932493

RESUMEN

PURPOSE: Prostate cancer is the second leading cause of male cancer deaths. Castration-resistant prostate cancer (CRPC) is a lethal stage of the disease that emerges when endocrine therapies are no longer effective at suppressing activity of the androgen receptor (AR) transcription factor. The purpose of this study was to identify genomic mechanisms that contribute to the development and progression of CRPC. EXPERIMENTAL DESIGN: We used whole-genome and targeted DNA-sequencing approaches to identify mechanisms underlying CRPC in an aggregate cohort of 272 prostate cancer patients. We analyzed structural rearrangements at the genome-wide level and carried out a detailed structural rearrangement analysis of the AR locus. We used genome engineering to perform experimental modeling of AR gene rearrangements and long-read RNA sequencing to analyze effects on expression of AR and truncated AR variants (AR-V). RESULTS: AR was among the most frequently rearranged genes in CRPC tumors. AR gene rearrangements promoted expression of diverse AR-V species. AR gene rearrangements occurring in the context of AR amplification correlated with AR overexpression. Cell lines with experimentally derived AR gene rearrangements displayed high expression of tumor-specific AR-Vs and were resistant to endocrine therapies, including the AR antagonist enzalutamide. CONCLUSIONS: AR gene rearrangements are an important mechanism of resistance to endocrine therapies in CRPC.


Asunto(s)
Biomarcadores de Tumor/genética , Resistencia a Antineoplásicos/genética , Reordenamiento Génico , Feniltiohidantoína/análogos & derivados , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Secuenciación Completa del Genoma/métodos , Antagonistas de Receptores Androgénicos/farmacología , Benzamidas , Línea Celular Tumoral , Humanos , Masculino , Metástasis de la Neoplasia , Nitrilos , Feniltiohidantoína/farmacología , Estudios Prospectivos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Receptores Androgénicos/química
10.
Mod Pathol ; 32(12): 1727-1733, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31375769

RESUMEN

Mucosal melanomas are rare, and less is known about the biomarkers of this subtype in comparison to cutaneous or uveal melanomas. Preferentially expressed antigen in melanoma (PRAME) has been studied as a tool for prognostication of uveal melanomas, and immunotherapy against PRAME-expressing tumor cells has already shown promise. Our goal was to retrospectively analyze 29 cases of mucosal melanomas at our institution to determine if any molecular and histopathologic prognosticators could be identified, as well as to study PRAME expression and its association with prognosis. We found that the majority of mucosal melanomas expressed PRAME and a high PRAME expression score predicted a poor prognosis. There was no association between prognosis and the histomorphologic features analyzed, such as presence of spindle cell or epithelioid predominance. BRAF mutations were absent in 16 of 16 cases tested. Pathogenic NRAS mutations were detected in 3 of 11 cases tested and were associated with shorter overall survival compared to those without NRAS alterations, but the presence of NRAS mutations did not correlate with PRAME expression. In conclusion, an increase in PRAME expression and the presence of a pathogenic NRAS were both associated with a worse prognosis in mucosal melanomas.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Biomarcadores de Tumor/análisis , Melanoma/patología , Membrana Mucosa/patología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , GTP Fosfohidrolasas/genética , Humanos , Inmunohistoquímica , Masculino , Melanoma/genética , Melanoma/metabolismo , Proteínas de la Membrana/genética , Persona de Mediana Edad , Membrana Mucosa/metabolismo , Mutación , Estudios Retrospectivos
11.
Proc Natl Acad Sci U S A ; 116(25): 12442-12451, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31147469

RESUMEN

Tumor-associated macrophages contribute to tumor progression and therapeutic resistance in breast cancer. Within the tumor microenvironment, tumor-derived factors activate pathways that modulate macrophage function. Using in vitro and in vivo models, we find that tumor-derived factors induce activation of the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway in macrophages. We also demonstrate that loss of STAT3 in myeloid cells leads to enhanced mammary tumorigenesis. Further studies show that macrophages contribute to resistance of mammary tumors to the JAK/STAT inhibitor ruxolitinib in vivo and that ruxolitinib-treated macrophages produce soluble factors that promote resistance of tumor cells to JAK inhibition in vitro. Finally, we demonstrate that STAT3 deletion and JAK/STAT inhibition in macrophages increases expression of the protumorigenic factor cyclooxygenase-2 (COX-2), and that COX-2 inhibition enhances responsiveness of tumors to ruxolitinib. These findings define a mechanism through which macrophages promote therapeutic resistance and highlight the importance of understanding the impact of targeted therapies on the tumor microenvironment.


Asunto(s)
Carcinogénesis , Inhibidores de las Cinasas Janus/farmacología , Macrófagos/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Humanos , Macrófagos/enzimología , Ratones , Nitrilos , Pirazoles/farmacología , Pirimidinas , Microambiente Tumoral
12.
Eur Urol ; 74(5): 562-572, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30049486

RESUMEN

BACKGROUND: The intractability of castration-resistant prostate cancer (CRPC) is exacerbated by tumour heterogeneity, including diverse alterations to the androgen receptor (AR) axis and AR-independent phenotypes. The availability of additional models encompassing this heterogeneity would facilitate the identification of more effective therapies for CRPC. OBJECTIVE: To discover therapeutic strategies by exploiting patient-derived models that exemplify the heterogeneity of CRPC. DESIGN, SETTING, AND PARTICIPANTS: Four new patient-derived xenografts (PDXs) were established from independent metastases of two patients and characterised using integrative genomics. A panel of rationally selected drugs was tested using an innovative ex vivo PDX culture system. INTERVENTION: The following drugs were evaluated: AR signalling inhibitors (enzalutamide and galeterone), a PARP inhibitor (talazoparib), a chemotherapeutic (cisplatin), a CDK4/6 inhibitor (ribociclib), bromodomain and extraterminal (BET) protein inhibitors (iBET151 and JQ1), and inhibitors of ribosome biogenesis/function (RNA polymerase I inhibitor CX-5461 and pan-PIM kinase inhibitor CX-6258). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Drug efficacy in ex vivo cultures of PDX tissues was evaluated using immunohistochemistry for Ki67 and cleaved caspase-3 levels. Candidate drugs were also tested for antitumour efficacy in vivo, with tumour volume being the primary endpoint. Two-tailed t tests were used to compare drug and control treatments. RESULTS AND LIMITATIONS: Integrative genomics revealed that the new PDXs exhibited heterogeneous mechanisms of resistance, including known and novel AR mutations, genomic structural rearrangements of the AR gene, and a neuroendocrine-like AR-null phenotype. Despite their heterogeneity, all models were sensitive to the combination of ribosome-targeting agents CX-5461 and CX-6258. CONCLUSIONS: This study demonstrates that ribosome-targeting drugs may be effective against diverse CRPC subtypes including AR-null disease, and highlights the potential of contemporary patient-derived models to prioritise treatment strategies for clinical translation. PATIENT SUMMARY: Diverse types of therapy-resistant prostate cancers are sensitive to a new combination of drugs that inhibit protein synthesis pathways in cancer cells.


Asunto(s)
Androstenos/farmacología , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Azepinas/farmacología , Benzotiazoles/farmacología , Resistencia a Antineoplásicos , Indoles/farmacología , Naftiridinas/farmacología , Feniltiohidantoína/análogos & derivados , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Ribosomas/efectos de los fármacos , Animales , Benzamidas , Humanos , Masculino , Ratones Endogámicos NOD , Ratones SCID , Terapia Molecular Dirigida , Nitrilos , Feniltiohidantoína/farmacología , Neoplasias de la Próstata Resistentes a la Castración/enzimología , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , ARN Polimerasa I/antagonistas & inhibidores , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Ribosomas/enzimología , Ribosomas/genética , Factores de Tiempo , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Ann Transl Med ; 6(9): 162, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29911110

RESUMEN

BACKGROUND: Massively parallel, or next-generation, sequencing is a powerful technique for the assessment of somatic genomic alterations in cancer samples. Numerous gene targets can be interrogated simultaneously with a high degree of sensitivity. The clinical standard of care for many advanced solid and hematologic malignancies currently requires mutation analysis of several genes in the front-line setting, making focused next generation sequencing (NGS) assays an effective tool for clinical molecular diagnostic laboratories. METHODS: We have utilized an integrated microfluidics circuit (IFC) technology for multiplex PCR-based library preparation coupled with a bioinformatic method designed to enhance indel detection. A parallel low input PCR-based library preparation method was developed for challenging specimens with low DNA yield. Computational data filters were written to optimize analytic sensitivity and specificity for clinically relevant variants. RESULTS: Minimum sequencing coverage and precision of variant calls were the two primary criteria used to establish minimum DNA mass input onto the IFC. Wet-bench and bioinformatics protocols were modified based on data from the optimization and familiarization process to improve assay performance. The NGS platform was then clinically validated for single nucleotide and indel (up to 93 base pair) variant detection with overall analytic accuracy of 98% (97% sensitivity; 100% specificity) using as little as 3 ng of formalin-fixed, paraffin-embedded DNA or 0.3 ng of unfixed DNA. CONCLUSIONS: We created a targeted clinical NGS assay for common solid and hematologic cancers with high sensitivity, high specificity, and the flexibility to test very limited tissue samples often encountered in routine clinical practice.

14.
Neurobiol Dis ; 116: 93-105, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29758256

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a polyglutamine (polyQ) repeat neurodegenerative disease in which a primary site of pathogenesis are cerebellar Purkinje cells. In addition to polyQ expansion of ataxin-1 protein (ATXN1), phosphorylation of ATXN1 at the serine 776 residue (ATXN1-pS776) plays a significant role in protein toxicity. Utilizing a biochemical approach, pharmacological agents and cell-based assays, including SCA1 patient iPSC-derived neurons, we examine the role of Protein Kinase A (PKA) as an effector of ATXN1-S776 phosphorylation. We further examine the implications of PKA-mediated phosphorylation at ATXN1-S776 on SCA1 through genetic manipulation of the PKA catalytic subunit Cα in Pcp2-ATXN1[82Q] mice. Here we show that pharmacologic inhibition of S776 phosphorylation in transfected cells and SCA1 patient iPSC-derived neuronal cells lead to a decrease in ATXN1. In vivo, reduction of PKA-mediated ATXN1-pS776 results in enhanced degradation of ATXN1 and improved cerebellar-dependent motor performance. These results provide evidence that PKA is a biologically important kinase for ATXN1-pS776 in cerebellar Purkinje cells.


Asunto(s)
Ataxia/metabolismo , Ataxina-1/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células de Purkinje/metabolismo , Serina/metabolismo , Animales , Ataxia/genética , Ataxia/patología , Ataxina-1/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Fosforilación/fisiología , Células de Purkinje/patología , Serina/genética
15.
Sci Signal ; 11(517)2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29440511

RESUMEN

Polarity is a fundamental property of most cell types. The Par protein complex is a major driving force in generating asymmetrically localized protein networks and consists of atypical protein kinase C (aPKC), Par3, and Par6. Dysfunction of this complex causes developmental abnormalities and diseases such as cancer. We identified a PDZ domain-binding motif in Par6 that was essential for its interaction with Par3 in vitro and for Par3-mediated membrane localization of Par6 in cultured cells. In fly embryos, we observed that the PDZ domain-binding motif was functionally redundant with the PDZ domain in targeting Par6 to the cortex of epithelial cells. Our structural analyses by x-ray crystallography and NMR spectroscopy showed that both the PDZ1 and PDZ3 domains but not the PDZ2 domain in Par3 engaged in a canonical interaction with the PDZ domain-binding motif in Par6. Par3 thus has the potential to recruit two Par6 proteins simultaneously, which may facilitate the assembly of polarity protein networks through multivalent PDZ domain interactions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Polaridad Celular , Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Dominios PDZ , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Animales , Línea Celular , Cristalografía por Rayos X , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Modelos Moleculares , Unión Proteica
16.
Oncotarget ; 9(94): 36693-36704, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30613352

RESUMEN

The metabolic protein alpha-methylacyl-CoA racemase (AMACR) is significantly overexpressed in prostate cancer compared to the normal prostate and other non-malignant tissue. Though an attractive target, there are no reports in the literature on leveraging the expression of AMACR for the molecular imaging of prostate cancer. Here, we used a molecular-genetic imaging strategy to exploit the transcriptional specificity of the AMACR promoter for the in vivo detection of prostate cancer using the reporter gene luciferase. We performed a stepwise truncation of the promoter and identified a 565 base pair minimal promoter for AMACR that retained both high activity and specificity. Following identification of the minimal promoter for AMACR, we used an advanced two-step transcriptional amplification system to maximize the promoter output. We showed that our optimized AMACR promoter can drive expression of luciferase for molecular imaging in subcutaneous xenograft models of androgen receptor-positive and androgen receptor-negative prostate cancer using a non-replicative adenovirus for gene delivery. Our results provide evidence that the AMACR promoter can be exploited to drive the cancer-specific expression of reporter genes and potentially even be incorporated into conditionally replicative adenoviruses for oncolytic therapy and other applications.

17.
Mod Pathol ; 31(2): 343-349, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29027537

RESUMEN

Intra-tumoral genomic heterogeneity is a well-established biologic property of human malignancies with emerging roles in cancer progression and therapy resistance. However, its impact on the clinical utility of genomic testing in patient management remains unclear. Furthermore, best practices to account for heterogeneity in the provision of highly accurate, clinically valid molecular testing have yet to be firmly established. Genomic biomarkers for the management of colorectal carcinoma are both well-established (ie, KRAS, NRAS) and emerging (BRAF, PIK3CA, and others) in respect to therapy selection and clinical trial eligibility. Critically, standard colorectal carcinoma management requires the exclusion of KRAS and NRAS mutations; thus optimal procedures to control for potential intra-tumoral heterogeneity are clinically important. Here, we assessed heterogeneity among three intra-tumoral sites within 99 colorectal carcinomas cases on a CLIA-validated oncology next generation sequencing assay and examined whether a pooling strategy overcame any discordant results. Overall, 11% of cases demonstrated discordant mutation results between sites; 2% of cases were discrepant for mutations within RAS genes while the remainder was discrepant in PIK3CA. Half of the discrepant cases were associated with borderline tumor cellularity assessment. Further, a sample pooling strategy across all three sites successfully detected the relevant mutation in all but one case. Our results indicate that intra-tumoral genomic heterogeneity of clinically relevant genes within colorectal carcinoma is a relatively infrequent occurrence and that a simple strategy to pool DNA from several tumor sites with adequate cellularity minimizes the risk of false negative results even further to ensure optimal patient management.


Asunto(s)
Neoplasias Colorrectales/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Adulto , Anciano , Anciano de 80 o más Años , Fosfatidilinositol 3-Quinasa Clase I/genética , Neoplasias Colorrectales/patología , Femenino , GTP Fosfohidrolasas/genética , Humanos , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
18.
Cancer Res ; 77(19): 5228-5235, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28928128

RESUMEN

Prostate cancer is the second leading cause of male cancer deaths due to disease progression to castration-resistant prostate cancer (CRPC). Androgen receptor (AR) splice variants including AR-V7 function as constitutively active transcription factors in CRPC cells, thereby promoting resistance to AR-targeted therapies. To date, there are no AR variant-specific treatments for CRPC. Here we report that the splicing of AR variants AR-V7 as well as AR-V1 and AR-V9 is regulated coordinately by a single polyadenylation signal in AR intron 3. Blocking this signal with morpholino technology or silencing of the polyadenylation factor CPSF1 caused a splice switch that inhibited expression of AR variants and blocked androgen-independent growth of CRPC cells. Our findings support the development of new therapies targeting the polyadenylation signal in AR intron 3 as a strategy to prevent expression of a broad array of AR variants in CRPC. Cancer Res; 77(19); 5228-35. ©2017 AACR.


Asunto(s)
Empalme Alternativo/genética , Regulación Neoplásica de la Expresión Génica , Poliadenilación , Neoplasias de la Próstata Resistentes a la Castración/genética , ARN Mensajero/genética , Receptores Androgénicos/genética , Apoptosis , Proliferación Celular , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/patología , Células Tumorales Cultivadas
19.
Clin Cancer Res ; 23(16): 4704-4715, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28473535

RESUMEN

Purpose: Androgen receptor (AR) variant AR-V7 is a ligand-independent transcription factor that promotes prostate cancer resistance to AR-targeted therapies. Accordingly, efforts are under way to develop strategies for monitoring and inhibiting AR-V7 in castration-resistant prostate cancer (CRPC). The purpose of this study was to understand whether other AR variants may be coexpressed with AR-V7 and promote resistance to AR-targeted therapies.Experimental Design: We utilized complementary short- and long-read sequencing of intact AR mRNA isoforms to characterize AR expression in CRPC models. Coexpression of AR-V7 and AR-V9 mRNA in CRPC metastases and circulating tumor cells was assessed by RNA-seq and RT-PCR, respectively. Expression of AR-V9 protein in CRPC models was evaluated with polyclonal antisera. Multivariate analysis was performed to test whether AR variant mRNA expression in metastatic tissues was associated with a 12-week progression-free survival endpoint in a prospective clinical trial of 78 CRPC-stage patients initiating therapy with the androgen synthesis inhibitor, abiraterone acetate.Results: AR-V9 was frequently coexpressed with AR-V7. Both AR variant species were found to share a common 3' terminal cryptic exon, which rendered AR-V9 susceptible to experimental manipulations that were previously thought to target AR-V7 uniquely. AR-V9 promoted ligand-independent growth of prostate cancer cells. High AR-V9 mRNA expression in CRPC metastases was predictive of primary resistance to abiraterone acetate (HR = 4.0; 95% confidence interval, 1.31-12.2; P = 0.02).Conclusions: AR-V9 may be an important component of therapeutic resistance in CRPC. Clin Cancer Res; 23(16); 4704-15. ©2017 AACR.


Asunto(s)
Androstenos/uso terapéutico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Variación Genética , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Receptores Androgénicos/genética , Línea Celular Tumoral , Proliferación Celular/genética , Supervivencia sin Enfermedad , Resistencia a Antineoplásicos/genética , Humanos , Masculino , Metástasis de la Neoplasia , Estudios Prospectivos , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN , Receptores Androgénicos/metabolismo
20.
Nat Immunol ; 18(6): 694-704, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28369050

RESUMEN

The transcription factor STAT5 has a critical role in B cell acute lymphoblastic leukemia (B-ALL). How STAT5 mediates this effect is unclear. Here we found that activation of STAT5 worked together with defects in signaling components of the precursor to the B cell antigen receptor (pre-BCR), including defects in BLNK, BTK, PKCß, NF-κB1 and IKAROS, to initiate B-ALL. STAT5 antagonized the transcription factors NF-κB and IKAROS by opposing regulation of shared target genes. Super-enhancers showed enrichment for STAT5 binding and were associated with an opposing network of transcription factors, including PAX5, EBF1, PU.1, IRF4 and IKAROS. Patients with a high ratio of active STAT5 to NF-κB or IKAROS had more-aggressive disease. Our studies indicate that an imbalance of two opposing transcriptional programs drives B-ALL and suggest that restoring the balance of these pathways might inhibit B-ALL.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Linfocitos B , Regulación Neoplásica de la Expresión Génica , Factor de Transcripción Ikaros/genética , Receptores de Células Precursoras de Linfocitos B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Factor de Transcripción STAT5/metabolismo , Agammaglobulinemia Tirosina Quinasa , Animales , Inmunoprecipitación de Cromatina , Citometría de Flujo , Humanos , Factores Reguladores del Interferón/genética , Ratones , Reacción en Cadena de la Polimerasa Multiplex , Subunidad p50 de NF-kappa B/genética , Factor de Transcripción PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad , Pronóstico , Proteína Quinasa C beta/genética , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Tasa de Supervivencia , Transactivadores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA