Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Front Oncol ; 14: 1390518, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803536

RESUMEN

Background: Cancer is a global health problem accounting for nearly one in six deaths worldwide. Conventional treatments together with new therapies have increased survival to this devastating disease. However, the persistent challenges of treatment resistance and the limited therapeutic arsenal available for specific cancer types still make research in new therapeutic strategies an urgent need. Methods: Chloroquine was tested in combination with different drugs (Panobinostat, KU-57788 and NU-7026) in 8 human-derived cancer cells lines (colorectal: HCT116 and HT29; breast: MDA-MB-231 and HCC1937; glioblastoma: A-172 and LN-18; head and neck: CAL-33 and 32816). Drug´s effect on proliferation was tested by MTT assays and cell death was assessed by Anexin V-PI apoptosis assays. The presence of DNA double-strand breaks was analyzed by phospho-H2AX fluorescent staining. To measure homologous recombination efficiency the HR-GFP reporter was used, which allows flow cytometry-based detection of HR stimulated by I-SceI endonuclease-induced DSBs. Results: The combination of chloroquine with any of the drugs employed displayed potent synergistic effects on apoptosis induction, with particularly pronounced efficacy observed in glioblastoma and head and neck cancer cell lines. We found that chloroquine produced DNA double strand breaks that depended on reactive oxygen species formation, whereas Panobinostat inhibited DNA double-strand breaks repair by homologous recombination. Cell death caused by chloroquine/Panobinostat combination were significantly reduced by N-Acetylcysteine, a reactive oxygen species scavenger, underscoring the pivotal role of DSB generation in CQ/LBH-induced lethality. Based on these data, we also explored the combination of CQ with KU-57788 and NU-7026, two inhibitors of the other main DSB repair pathway, nonhomologous end joining (NHEJ), and again synergistic effects on apoptosis induction were observed. Conclusion: Our data provide a rationale for the clinical investigation of CQ in combination with DSB inhibitors for the treatment of different solid tumors.

2.
JAMA Netw Open ; 7(4): e247811, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648056

RESUMEN

Importance: RAD51C and RAD51D are involved in DNA repair by homologous recombination. Germline pathogenic variants (PVs) in these genes are associated with an increased risk of ovarian and breast cancer. Understanding the homologous recombination deficiency (HRD) status of tumors from patients with germline PVs in RAD51C/D could guide therapeutic decision-making and improve survival. Objective: To characterize the clinical and tumor characteristics of germline RAD51C/D PV carriers, including the evaluation of HRD status. Design, Setting, and Participants: This retrospective cohort study included 91 index patients plus 90 relatives carrying germline RAD51C/D PV (n = 181) in Spanish hospitals from January 1, 2014, to December 31, 2021. Genomic and functional HRD biomarkers were assessed in untreated breast and ovarian tumor samples (n = 45) from June 2022 to February 2023. Main Outcomes and Measures: Clinical and pathologic characteristics were assessed using descriptive statistics. Genomic HRD by genomic instability scores, functional HRD by RAD51, and gene-specific loss of heterozygosity were analyzed. Associations between HRD status and tumor subtype, age at diagnosis, and gene-specific loss of heterozygosity in RAD51C/D were investigated using logistic regression or the t test. Results: A total of 9507 index patients were reviewed, and 91 patients (1.0%) were found to carry a PV in RAD51C/D; 90 family members with a germline PV in RAD51C/D were also included. A total of 157 of carriers (86.7%) were women and 181 (55.8%) had received a diagnosis of cancer, mainly breast cancer or ovarian cancer. The most prevalent PVs were c.1026+5_1026+7del (11 of 56 [19.6%]) and c.709C>T (9 of 56 [16.1%]) in RAD51C and c.694C>T (20 of 35 [57.1%]) in RAD51D. In untreated breast cancer and ovarian cancer, the prevalence of functional and genomic HRD was 55.2% (16 of 29) and 61.1% (11 of 18) for RAD51C, respectively, and 66.7% (6 of 9) and 90.0% (9 of 10) for RAD51D. The concordance between HRD biomarkers was 91%. Tumors with the same PV displayed contrasting HRD status, and age at diagnosis did not correlate with the occurrence of HRD. All breast cancers retaining the wild-type allele were estrogen receptor positive and lacked HRD. Conclusions and Relevance: In this cohort study of germline RAD51C/D breast cancer and ovarian cancer, less than 70% of tumors displayed functional HRD, and half of those that did not display HRD were explained by retention of the wild-type allele, which was more frequent among estrogen receptor-positive breast cancers. Understanding which tumors are associated with RAD51C/D and HRD is key to identify patients who can benefit from targeted therapies, such as PARP (poly [adenosine diphosphate-ribose] polymerase) inhibitors.


Asunto(s)
Neoplasias de la Mama , Mutación de Línea Germinal , Recombinación Homóloga , Neoplasias Ováricas , Recombinasa Rad51 , Adulto , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/epidemiología , Proteínas de Unión al ADN/genética , Predisposición Genética a la Enfermedad , Recombinación Homóloga/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/epidemiología , Prevalencia , Estudios Retrospectivos , España/epidemiología , Recombinasa Rad51/genética
3.
Sci Rep ; 14(1): 8797, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627415

RESUMEN

Deletions of chromosome 1p (del(1p)) are a recurrent genomic aberration associated with poor outcome in Multiple myeloma (MM.) TRIM33, an E3 ligase and transcriptional co-repressor, is located within a commonly deleted region at 1p13.2. TRIM33 is reported to play a role in the regulation of mitosis and PARP-dependent DNA damage response (DDR), both of which are important for maintenance of genome stability. Here, we demonstrate that MM patients with loss of TRIM33 exhibit increased chromosomal instability and poor outcome. Through knockdown studies, we show that TRIM33 loss induces a DDR defect, leading to accumulation of DNA double strand breaks (DSBs) and slower DNA repair kinetics, along with reduced efficiency of non-homologous end joining (NHEJ). Furthermore, TRIM33 loss results in dysregulated ubiquitination of ALC1, an important regulator of response to PARP inhibition. We show that TRIM33 knockdown sensitizes MM cells to the PARP inhibitor Olaparib, and this is synergistic with the standard of care therapy bortezomib, even in co-culture with bone marrow stromal cells (BMSCs). These findings suggest that TRIM33 loss contributes to the pathogenesis of high-risk MM and that this may be therapeutically exploited through the use of PARP inhibitors.


Asunto(s)
Mieloma Múltiple , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Reparación del ADN , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Roturas del ADN de Doble Cadena , Inestabilidad Genómica , Factores de Transcripción
4.
Cancer Treat Rev ; 121: 102627, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37925878

RESUMEN

Precision medicine is a major achievement that has impacted on management of patients diagnosed with advanced cholangiocarcinoma (CCA) over the last decade. Molecular profiling of CCA has identified targetable alterations, such as fibroblast growth factor receptor-2 (FGFR-2) fusions, and has thus led to the development of a wide spectrum of compounds. Despite favourable response rates, especially with the latest generation FGFRi, there are still a proportion of patients who will not achieve a radiological response to treatment, or who will have disease progression as the best response. In addition, for patients who do respond to treatment, secondary resistance frequently develops and mechanisms of such resistance are not fully understood. This review will summarise the current state of development of FGFR inhibitors in CCA, their mechanism of action, activity, and the hypothesised mechanisms of resistance.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Receptores de Factores de Crecimiento de Fibroblastos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/metabolismo , Inhibidores de Proteínas Quinasas/efectos adversos , Progresión de la Enfermedad , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/patología
5.
Cancers (Basel) ; 15(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36672401

RESUMEN

The DNA damage response (DDR), a set of signaling pathways for DNA damage detection and repair, maintains genomic stability when cells are exposed to endogenous or exogenous DNA-damaging agents. Alterations in these pathways are strongly associated with cancer development, including ovarian cancer (OC), the most lethal gynecologic malignancy. In OC, failures in the DDR have been related not only to the onset but also to progression and chemoresistance. It is known that approximately half of the most frequent subtype, high-grade serous carcinoma (HGSC), exhibit defects in DNA double-strand break (DSB) repair by homologous recombination (HR), and current evidence indicates that probably all HGSCs harbor a defect in at least one DDR pathway. These defects are not restricted to HGSCs; mutations in ARID1A, which are present in 30% of endometrioid OCs and 50% of clear cell (CC) carcinomas, have also been found to confer deficiencies in DNA repair. Moreover, DDR alterations have been described in a variable percentage of the different OC subtypes. Here, we overview the main DNA repair pathways involved in the maintenance of genome stability and their deregulation in OC. We also recapitulate the preclinical and clinical data supporting the potential of targeting the DDR to fight the disease.

6.
Eur J Cancer ; 182: 3-14, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36706655

RESUMEN

AIM: To describe patient characteristics, effectiveness and safety in a real-world population treated with niraparib in the Spanish expanded-access programme. PATIENTS AND METHODS: This retrospective observational study included women with platinum-sensitive recurrent high-grade serous ovarian cancer who received maintenance niraparib within the Spanish niraparib expanded-access programme. Eligible patients had received ≥2 previous lines of platinum-containing therapy, remained platinum-sensitive after the penultimate line of platinum and had responded to the most recent platinum-containing therapy. Niraparib dosing was at the treating physician's discretion (300 mg/day fixed starting dose or individualised starting dose [ISD] according to baseline body weight and platelet count). Safety, impact of dose adjustments, patient characteristics and effectiveness were analysed using data extracted from medical records. RESULTS: Among 316 eligible patients, 80% had BRCA wild-type tumours and 66% received an ISD. Median niraparib duration was 7.8 months. The most common adverse events typically occurred within 3 months of starting niraparib. Median progression-free survival was 8.6 (95% confidence interval [CI] 7.6-10.0) months. One- and 2-year overall survival rates were 86% (95% CI 81-89%) and 65% (95% CI 59-70%), respectively. Dose interruptions, dose reductions, haematological toxicities and asthenia/fatigue were less common with ISD than fixed starting dose niraparib, but progression-free survival was similar irrespective of dosing strategy. Subsequent therapy included platinum in 71% of patients who received further treatment. CONCLUSION: Outcomes in this large real-world dataset of niraparib-treated patients are consistent with phase III trials, providing reassuring evidence of the tolerability and activity of niraparib maintenance therapy for platinum-sensitive recurrent ovarian cancer. GOV REGISTRATION: NCT04546373.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Indazoles , Recurrencia Local de Neoplasia/tratamiento farmacológico
7.
Biomolecules ; 12(11)2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36358912

RESUMEN

Metastatic melanoma is a highly immunogenic tumor with very poor survival rates due to immune system escape-mechanisms. Immune checkpoint inhibitors (ICIs) targeting the cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and the programmed death-1 (PD1) receptors, are being used to impede immune evasion. This immunotherapy entails an increment in the overall survival rates. However, melanoma cells respond with evasive molecular mechanisms. ERK cascade inhibitors are also used in metastatic melanoma treatment, with the RAF activity blockade being the main therapeutic approach for such purpose, and in combination with MEK inhibitors improves many parameters of clinical efficacy. Despite their efficacy in inhibiting ERK signaling, the rewiring of the melanoma cell-signaling results in disease relapse, constituting the reinstatement of ERK activation, which is a common cause of some resistance mechanisms. Recent studies revealed that the combination of RAS-ERK pathway inhibitors and ICI therapy present promising advantages for metastatic melanoma treatment. Here, we present a recompilation of the combined therapies clinically evaluated in patients.


Asunto(s)
Antineoplásicos , Melanoma , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Sistema de Señalización de MAP Quinasas , Melanoma/patología , Inmunoterapia/métodos , Antineoplásicos/farmacología
8.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36361809

RESUMEN

Ovarian cancer (OC) is one of the most common gynecologic neoplasia and has the highest mortality rate, which is mainly due to late-stage diagnosis and chemotherapy resistance. There is an urgent need to explore new and better therapeutic strategies. We have previously described a family of Microtubule Destabilizing Sulfonamides (MDS) that does not trigger multidrug-mediated resistance in OC cell lines. MDS bind to the colchicine site of tubulin, disrupting the microtubule network and causing antiproliferative and cytotoxic effects. In this work, a novel microtubule-destabilizing agent (PILA9) was synthetized and characterized. This compound also inhibited OC cell proliferation and induced G2/M cell cycle arrest and apoptosis. Interestingly, PILA9 was significantly more cytotoxic than MDS. Here, we also analyzed the effect of these microtubule-destabilizing agents (MDA) in combination with Panobinostat, a pan-histone deacetylase inhibitor. We found that Panobinostat synergistically enhanced MDA-cytotoxicity. Mechanistically, we observed that Panobinostat and MDA induced α-tubulin acetylation and that the combination of both agents enhanced this effect, which could be related to the observed synergy. Altogether, our results suggest that MDA/Panobinostat combinations could represent new therapeutic strategies against OC.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Femenino , Humanos , Panobinostat/farmacología , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Antineoplásicos/farmacología , Apoptosis , Proliferación Celular , Microtúbulos , Sulfonamidas/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Línea Celular Tumoral
9.
BMC Cancer ; 22(1): 1150, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36348385

RESUMEN

BACKGROUND: Rucaparib is a poly(ADP-ribose) polymerase inhibitor approved in Europe as maintenance therapy for recurrent platinum-sensitive (Pt-S) ovarian cancer (OC). The Rucaparib Access Programme (RAP) was designed to provide early access to rucaparib for the above-mentioned indication, as well as for patients with BRCA-mutated Pt-S or platinum-resistant (Pt-R) OC and no therapeutic alternatives. METHODS: In this observational, retrospective study we analysed the efficacy and safety of rucaparib within the RAP in Spain. Hospitals associated with the Spanish Ovarian Cancer Research Group (GEICO) recruited patients with high-grade epithelial ovarian, fallopian tube, or primary peritoneal cancer treated with rucaparib 600 mg twice daily as maintenance or treatment (Pt-S/Pt-R) in the RAP. Baseline characteristics, efficacy, and safety data were collected. RESULTS: Between July 2020 and February 2021, 51 patients treated in 22 hospitals in the RAP were included in the study. Eighteen patients with a median of 3 (range, 1-6) prior treatment lines received rucaparib as maintenance; median progression-free survival (PFS) for this group was 9.1 months (95% confidence interval [CI], 4.2-11.6 months). Among 33 patients (median 5 [range, 1-9] prior treatment lines) who received rucaparib as treatment, 7 and 26 patients had Pt-S and Pt-R disease, respectively. Median PFS was 10.6 months (95% CI, 2.5 months-not reached) in the Pt-S group and 2.2 months (95% CI, 1.1-3.2 months) in the Pt-R group. Grade ≥ 3 treatment-emergent adverse events were reported in 39% of all patients, the most common being anaemia (12% and 15% in the maintenance and treatment groups, respectively). At data cut-off, 5 patients remained on treatment. CONCLUSION: Efficacy results in these heavily pre-treated patients were similar to those from previous trials. The safety profile of rucaparib in real life was predictable and manageable.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Humanos , Femenino , España , Neoplasias Ováricas/tratamiento farmacológico , Estudios Retrospectivos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/efectos adversos , Antineoplásicos/uso terapéutico
10.
Cancers (Basel) ; 14(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36011023

RESUMEN

The incidence of early-onset colorectal cancer (EOCRC; age younger than 50 years) has been progressively increasing over the last decades globally, with causes unexplained. A distinct molecular feature of EOCRC is that compared with cases of late-onset colorectal cancer, in EOCRC cases, there is a higher incidence of Nodal Modulator 1 (NOMO1) somatic deletions. However, the mechanisms of NOMO1 in early-onset colorectal carcinogenesis are currently unknown. In this study, we show that in 30% of EOCRCs with heterozygous deletion of NOMO1, there were pathogenic mutations in this gene, suggesting that NOMO1 can be inactivated by deletion or mutation in EOCRC. To study the role of NOMO1 in EOCRC, CRISPR/cas9 technology was employed to generate NOMO1 knockout HCT-116 (EOCRC) and HS-5 (bone marrow) cell lines. NOMO1 loss in these cell lines did not perturb Nodal pathway signaling nor cell proliferation. Expression microarrays, RNA sequencing, and protein expression analysis by LC-IMS/MS showed that NOMO1 inactivation deregulates other signaling pathways independent of the Nodal pathway, such as epithelial-mesenchymal transition and cell migration. Significantly, NOMO1 loss increased the migration capacity of CRC cells. Additionally, a gut-specific conditional NOMO1 KO mouse model revealed no subsequent tumor development in mice. Overall, these findings suggest that NOMO1 could play a secondary role in early-onset colorectal carcinogenesis because its loss increases the migration capacity of CRC cells. Therefore, further study is warranted to explore other signalling pathways deregulated by NOMO1 loss that may play a significant role in the pathogenesis of the disease.

11.
Pathogens ; 11(8)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-36014998

RESUMEN

Complex gill disorder (CGD) is an important condition in Atlantic salmon aquaculture, but the roles of the putative aetiological agents in the pathogenesis are uncertain. A longitudinal study was undertaken on two salmon farms in Scotland to determine the variations in loads of CGD-associated pathogens (Desmozoon lepeophtherii, Candidatus Branchiomonas cysticola, salmon gill pox virus (SGPV) and Neoparamoeba perurans) estimated by quantitative PCR. In freshwater, Ca. B. cysticola and SGPV were detected in both populations, but all four pathogens were detected on both farms during the marine stage. Candidatus B. cysticola and D. lepeophtherii were detected frequently, with SGPV detected sporadically. In the marine phase, increased N. perurans loads associated significantly (p < 0.05) with increases in semi-quantitative histological gill-score (HGS). Increased Ca. B. cysticola load associated significantly (p < 0.05) with increased HGS when only Farm B was analysed. Higher loads of D. lepeophtherii were associated significantly (p < 0.05) with increased HGS on Farm B despite the absence of D. lepeophtherii-type microvesicles. Variations in SGPV were not associated significantly (p > 0.05) with changes in HSG. This study also showed that water temperature (season) and certain management factors were associated with higher HGS. This increase in histological gill lesions will have a deleterious impact on fish health and welfare, and production performance.

12.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35886866

RESUMEN

Ovarian cancer (OC) is the most lethal gynecological malignancy; therefore, more effective treatments are urgently needed. We recently reported that chloroquine (CQ) increased reactive oxygen species (ROS) in OC cell lines (OCCLs), causing DNA double-strand breaks (DSBs). Here, we analyzed whether these lesions are repaired by nonhomologous end joining (NHEJ), one of the main pathways involved in DSB repair, and if the combination of CQ with NHEJ inhibitors (NHEJi) could be effective against OC. We found that NHEJ inhibition increased the persistence of γH2AX foci after CQ-induced DNA damage, revealing an essential role of this pathway in the repair of the lesions. NHEJi decreased the proliferation of OCCLs and a strong in vitro synergistic effect on apoptosis induction was observed when combined with CQ. This effect was largely abolished by the antioxidant N-Acetyl-L-cysteine, revealing the critical role of ROS and DSB generation in CQ/NHEJi-induced lethality. We also found that the NHEJ efficiency in OCCLs was not affected by treatment with Panobinostat, a pan-histone deacetylase inhibitor that also synergizes with CQ in OCCLs by impairing homologous recombination. Accordingly, the triple combination of CQ-NHEJi-Panobinostat exerted a stronger in vitro synergistic effect. Altogether, our data suggest that the combination of these drugs could represent new therapeutic strategies against OC.


Asunto(s)
Cloroquina , Neoplasias Ováricas , Carcinoma Epitelial de Ovario , Cloroquina/farmacología , Roturas del ADN de Doble Cadena , Daño del ADN , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Panobinostat , Especies Reactivas de Oxígeno
13.
Front Physiol ; 13: 887734, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35586715

RESUMEN

Background and Purpose: European Guidelines recommend early evaluation of diuresis and natriuresis after the first administration of diuretic to identify patients with insufficient diuretic response during acute heart failure. The aim of this work is to evaluate the prevalence and characteristics of patients with insufficient diuretic response according to this new algorithm. Methods: Prospective observational single centre study of consecutive patients with acute heart failure and congestive signs. Clinical evaluation, echocardiography and blood tests were performed. Diuretic naïve patients received 40 mg of intravenous furosemide. Patients on an oupatient diuretic regimen received 2 times the ambulatory dose. The diuresis volume was assessed 6 h after the first loop diuretic administration, and a spot urinary sample was taken after 2 h. Insufficient diuretic response was defined as natriuresis <70 mEq/L or diuresis volume <600 ml. Results: From January 2020 to December 2021, 73 patients were included (59% males, median age 76 years). Of these, 21 patients (28.8%, 95%CI 18.4; 39.2) had an insufficient diuretic response. Diuresis volume was <600 ml in 13 patients (18.1%), and 12 patients (16.4%) had urinary sodium <70 mEq/L. These patients had lower systolic blood pressure, worse glomerular filtration rate, and higher aldosterone levels. Ambulatory furosemide dose was also higher. These patients required more frequently thiazides and inotropes during admission. Conclusion: The diagnostic algorithm based on diuresis and natriuresis was able to detect up to 29% of patients with insufficient diuretic response, who showed some characteristics of more advanced disease.

14.
Exp Hematol Oncol ; 11(1): 18, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361260

RESUMEN

BACKGROUND: IRE1 is an unfolded protein response (UPR) sensor with kinase and endonuclease activity. It plays a central role in the endoplasmic reticulum (ER) stress response through unconventional splicing of XBP1 mRNA and regulated IRE1-dependent decay (RIDD). Multiple myeloma (MM) cells are known to exhibit an elevated level of baseline ER stress due to immunoglobulin production, however RIDD activity has not been well studied in this disease. In this study, we aimed to investigate the potential of RNA-sequencing in the identification of novel RIDD targets in MM cells and to analyze the role of these targets in MM cells. METHODS: In vitro IRE1-cleavage assay was combined with RNA sequencing. The expression level of RIDD targets in MM cell lines was measured by real-time RT-PCR and Western blot. RESULTS: Bioinformatic analysis revealed hundreds of putative IRE1 substrates in the in vitro assay, 32 of which were chosen for further validation. Looking into the secondary structure of IRE1 substrates, we found that the consensus sequences of IRF4, PRDM1, IKZF1, KLF13, NOTCH1, ATR, DICER, RICTOR, CDK12, FAM168B, and CENPF mRNAs were accompanied by a stem-loop structure essential for IRE1-mediated cleavage. In fact, we show that mRNA and protein levels corresponding to these targets were attenuated in an IRE1-dependent manner by treatment with ER-stress-inducing agents. In addition, a synergistic effect between IMiDs and ER-stress inducers was found. CONCLUSION: This study, using RNA sequencing, shows that IRE1 RNase has a broad range of mRNA substrates in myeloma cells and demonstrates for the first time that IRE1 is a key regulator of several proteins of importance in MM survival and proliferation.

15.
Cancers (Basel) ; 14(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35454870

RESUMEN

Patient registries linked to biorepositories constitute a valuable asset for clinical and translational research in oncology. The Spanish Group of Ovarian Cancer Research (GEICO), in collaboration with the Spanish Biobank Network (RNBB), has developed a multicentre, multistakeholder, prospective virtual clinical registry (VCR) associated with biobanks for the collection of real-world data and biological samples of gynaecological cancer patients. This collaborative project aims to promote research by providing broad access to high-quality clinical data and biospecimens for future research according to the needs of investigators and to increase diagnostic and therapeutic opportunities for gynaecological cancer patients in Spain. The VCR will include the participation of more than 60 Spanish hospitals entering relevant clinical information in harmonised electronic case report forms (eCRFs) in four different cohorts: ovarian, endometrial, cervical, and rare gynaecological cancers (gestational trophoblastic disease). Initial data for the cases included till December 2021 are presented. The model described herein establishes a real-world win-win collaboration between multicentre structures, promoted and supported by GEICO, that will contribute to the success of translational research in gynaecological cancer.

16.
Front Neuroanat ; 16: 1082701, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36620194

RESUMEN

It is widely accepted that some types of learning involve structural and functional changes of hippocampal synapses. Cell adhesion molecules neural cell adhesion molecule (NCAM), its polysialylated form polysialic acid to NCAM (PSA-NCAM), and L1 are prominent modulators of those changes. On the other hand, trace eyeblink conditioning, an associative motor learning task, requires the active participation of hippocampal circuits. However, the involvement of NCAM, PSA-NCAM, and L1 in this type of learning is not fully known. Here, we aimed to investigate the possible time sequence modifications of such neural cell adhesion molecules in the hippocampus during the acquisition of a trace eyeblink conditioning. To do so, the hippocampal expression of NCAM, PSA-NCAM, and L1 was assessed at three different time points during conditioning: after one (initial acquisition), three (partial acquisition), and six (complete acquisition) sessions of the conditioning paradigm. The conditioned stimulus (CS) was a weak electrical pulse separated by a 250-ms time interval from the unconditioned stimuli (US, a strong electrical pulse). An acquisition-dependent regulation of these adhesion molecules was found in the hippocampus. During the initial acquisition of the conditioning eyeblink paradigm (12 h after 1 and 3 days of training), synaptic expression of L1 and PSA-NCAM was transiently increased in the contralateral hippocampus to the paired CS-US presentations, whereas, when the associative learning was completed, such increase disappeared, but a marked and bilateral upregulation of NCAM was found. In conclusion, our findings show a specific temporal pattern of hippocampal CAMs expression during the acquisition process, highlighting the relevance of NCAM, PSA-NCAM, and L1 as learning-modulated molecules critically involved in remodeling processes underlying associative motor-memories formation.

17.
Foods ; 12(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36613256

RESUMEN

The unique composition and technological properties of some oat bran components (mainly protein and soluble fiber) and olive oil make them a good choice to form oil-in-water vegetable emulsions. The different concentrations of oat bran were studied to form olive oil-in water (O/W) emulsions to apply as a replacement for fat and meat. As a result, four O/W emulsions (OBE) were formulated with 10% (OBE10), 15% (OBE15), 20% (OEB20), and 30% (OBE30) oat bran concentrations and 40% olive oil, with the corresponding amount of water added for each O/W emulsion. Composition, technological properties (thermal stability, pH, texture), and lipid structural characteristics were evaluated. The results showed that low oat bran content (OEB10)-with a lower concentration of oat protein and ß-glucans-resulted in an O/W emulsion with an aggregated droplet structure and lower thermal stability and hardness. These connections between composition, technology, and structural properties of olive O/W emulsions elaborated with oat bran could help in making the optimal choice for their potential application in the production of foods such as healthier meat products.

18.
J BUON ; 26(5): 2131-2140, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34761627

RESUMEN

PURPOSE: The neutrophil-to-lymphocyte ratio (NLR) is an accessible marker from a routine blood test. This study explored the prognostic and predictive value of a change in NLR (c-NLR) after chemotherapy, baseline NLR (bNLR) and chemotherapy response, in metastatic gastric cancer (mGC) patients. METHODS: A total of 116 mGC patients treated between 2009 to 2019 at seven hospitals from Galician Research Group on Digestive Tumors (GITuD) were reviewed in a multicentre, ambispective and observational study. NLR was calculated and the optimal cut-off was defined as NLR=3.96 based on ROC method. NLR was determined at baseline and after two chemotherapy cycles in first line treatment. Change NLR was calculated as NLR after two chemotherapy cycles minus bNLR. The relation of bNLR and c-NLR to overall survival (OS) was evaluated by Kaplan-Meier method and compared by log-rank test. Dynamic Score (DScore) based on c-NLR and baseline NLR were correlated with OS and radiological response. Univariate, multivariate and chi-square analyses were performed. RESULTS: Median patient age was 68.7 years, and 66% were male. Univariate analysis showed OS correlation for bNLR ≥3.96 (5.97 vs 10.87 months, p=0.001), c-NLR increase (6.63 vs 10.34 months, p=0.021) and DScore (12.74 vs 7.68 vs 2.43 months, p<0.001). High DScore was associated with radiological progression after two cycles (x2=10.26, p=0.006). Multivariate analysis: bNLR ≥3.96 (HR=2.16, p=0.003) and c-NLR increase (HR= 2.36, p=0.003) were prognostic factors of poor OS. CONCLUSION: High bNLR and increased NLR after chemotherapy were associated with worse outcome. Dynamic measurement of NLR provides information for stratifying patients to guide optimal treatment.


Asunto(s)
Linfocitos , Neutrófilos , Neoplasias Gástricas/sangre , Neoplasias Gástricas/patología , Anciano , Femenino , Humanos , Recuento de Leucocitos , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Valor Predictivo de las Pruebas , Pronóstico , Estudios Prospectivos , Estudios Retrospectivos , Neoplasias Gástricas/tratamiento farmacológico
19.
Enferm Infecc Microbiol Clin (Engl Ed) ; 39(9): 445-450, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34736748

RESUMEN

OBJECTIVES: Acute cholangitis is one of the most frequent complications in patients carrying biliary stents. The aim of our study is to analyze the demographic and clinical characteristics, as well as the microbiological profile and evolution of patients with acute bacteremic cholangitis, comparing them based upon they were or not biliary stent carriers. METHODS: We performed a retrospective analysis of all consecutive patients over 18 years-old with a stent placement in our center between 2008 and 2017 were included. We compared them with our prospective cohort of patients with a diagnosis of acute bacteremic cholangitis. Primary outcome was 30-day mortality. Secondary outcome was clinical cure at day 7, 14-day mortality and 90-day recurrence. RESULTS: Two hundred and seventy-three patients were analyzed, including 156 in the stent-related (SR) and 117 in the stent not-related (SNR) group, respectively. Stent-related colangitis patients were younger, with more comorbidities and with a greater severity of infection. Escherichia coli and Klebsiella pneumonia were the most frequent isolation. Enterococcus spp. was the third most frequent isolation in SR group but were uncommon in SNR patients; where E. coli was the most prevalent microorganism. Septic shock (HR 3.44, 95% [CI 1.18-8.77]), inadequate empirical treatment (HR 2.65, 95% CI [1.38-.7.98]) and advanced neoplasia (HR 2.41, 95% CI [1.55-6.44]) were independent 30-day mortality risk factors. The 90-day recurrence rate significantly higher in those patients with stent-related cholangitis (29% vs. 13%, p=0.016) and stent replacement was associated with lower recurrence rate (HR 0.38, 95% CI [0.11-0.77]). CONCLUSIONS: Clinical and microbiological profile, as well as outcome of patients with SR and SNR cholangitis were different. In SR group, recurrence rate was high and stent replacement was associated with a lower risk.


Asunto(s)
Colangitis , Escherichia coli , Adolescente , Humanos , Estudios Prospectivos , Estudios Retrospectivos , Factores de Riesgo , Stents
20.
Genes (Basel) ; 12(10)2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34680951

RESUMEN

Signals conveyed through the RAS-ERK pathway constitute a pivotal regulatory element in cancer-related cellular processes. Recently, RAS dimerization has been proposed as a key step in the relay of RAS signals, critically contributing to RAF activation. RAS clustering at plasma membrane microdomains and endomembranes facilitates RAS dimerization in response to stimulation, promoting RAF dimerization and subsequent activation. Remarkably, inhibiting RAS dimerization forestalls tumorigenesis in cellular and animal models. Thus, the pharmacological disruption of RAS dimers has emerged as an additional target for cancer researchers in the quest for a means to curtail aberrant RAS activity.


Asunto(s)
Carcinogénesis/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Multimerización de Proteína , Proteínas ras/metabolismo , Animales , Humanos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA