Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Hum Reprod ; 35(3): 617-640, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32219408

RESUMEN

STUDY QUESTION: Do seminal plasma (SP) and its constituents affect the decidualization capacity and transcriptome of human primary endometrial stromal fibroblasts (eSFs)? SUMMARY ANSWER: SP promotes decidualization of eSFs from women with and without inflammatory disorders (polycystic ovary syndrome (PCOS), endometriosis) in a manner that is not mediated through semen amyloids and that is associated with a potent transcriptional response, including the induction of interleukin (IL)-11, a cytokine important for SP-induced decidualization. WHAT IS KNOWN ALREADY: Clinical studies have suggested that SP can promote implantation, and studies in vitro have demonstrated that SP can promote decidualization, a steroid hormone-driven program of eSF differentiation that is essential for embryo implantation and that is compromised in women with the inflammatory disorders PCOS and endometriosis. STUDY DESIGN, SIZE, DURATION: This is a cross-sectional study involving samples treated with vehicle alone versus treatment with SP or SP constituents. SP was tested for the ability to promote decidualization in vitro in eSFs from women with or without PCOS or endometriosis (n = 9). The role of semen amyloids and fractionated SP in mediating this effect and in eliciting transcriptional changes in eSFs was then studied. Finally, the role of IL-11, a cytokine with a key role in implantation and decidualization, was assessed as a mediator of the SP-facilitated decidualization. PARTICIPANTS/MATERIALS, SETTING, METHODS: eSFs and endometrial epithelial cells (eECs) were isolated from endometrial biopsies from women of reproductive age undergoing benign gynecologic procedures and maintained in vitro. Assays were conducted to assess whether the treatment of eSFs with SP or SP constituents affects the rate and extent of decidualization in women with and without inflammatory disorders. To characterize the response of the endometrium to SP and SP constituents, RNA was isolated from treated eSFs or eECs and analyzed by RNA sequencing (RNAseq). Secreted factors in conditioned media from treated cells were analyzed by Luminex and ELISA. The role of IL-11 in SP-induced decidualization was assessed through Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-9-mediated knockout experiments in primary eSFs. MAIN RESULTS AND THE ROLE OF CHANCE: SP promoted decidualization both in the absence and presence of steroid hormones (P < 0.05 versus vehicle) in a manner that required seminal proteins. Semen amyloids did not promote decidualization and induced weak transcriptomic and secretomic responses in eSFs. In contrast, fractionated SP enriched for seminal microvesicles (MVs) promoted decidualization. IL-11 was one of the most potently SP-induced genes in eSFs and was important for SP-facilitated decidualization. LARGE SCALE DATA: RNAseq data were deposited in the Gene Expression Omnibus repository under series accession number GSE135640. LIMITATIONS, REASONS FOR CAUTION: This study is limited to in vitro analyses. WIDER IMPLICATIONS OF THE FINDINGS: Our results support the notion that SP promotes decidualization, including within eSFs from women with inflammatory disorders. Despite the general ability of amyloids to induce cytokines known to be important for implantation, semen amyloids poorly signaled to eSFs and did not promote their decidualization. In contrast, fractionated SP enriched for MVs promoted decidualization and induced a transcriptional response in eSFs that overlapped with that of SP. Our results suggest that SP constituents, possibly those associated with MVs, can promote decidualization of eSFs in an IL-11-dependent manner in preparation for implantation. STUDY FUNDING/COMPETING INTEREST(S): This project was supported by NIH (R21AI116252, R21AI122821 and R01AI127219) to N.R.R. and (P50HD055764) to L.C.G. The authors declare no conflict of interest.


Asunto(s)
Decidua , Fibroblastos/citología , Interleucina-11/fisiología , Semen , Estudios Transversales , Decidua/fisiología , Endometriosis , Endometrio/citología , Femenino , Humanos , Interleucina-11/genética , Síndrome del Ovario Poliquístico
2.
Cell ; 179(4): 880-894.e10, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31668804

RESUMEN

Current approaches to reducing the latent HIV reservoir entail first reactivating virus-containing cells to become visible to the immune system. A critical second step is killing these cells to reduce reservoir size. Endogenous cytotoxic T-lymphocytes (CTLs) may not be adequate because of cellular exhaustion and the evolution of CTL-resistant viruses. We have designed a universal CAR-T cell platform based on CTLs engineered to bind a variety of broadly neutralizing anti-HIV antibodies. We show that this platform, convertibleCAR-T cells, effectively kills HIV-infected, but not uninfected, CD4 T cells from blood, tonsil, or spleen and only when armed with anti-HIV antibodies. convertibleCAR-T cells also kill within 48 h more than half of the inducible reservoir found in blood of HIV-infected individuals on antiretroviral therapy. The modularity of convertibleCAR-T cell system, which allows multiplexing with several anti-HIV antibodies yielding greater breadth and control, makes it a promising tool for attacking the latent HIV reservoir.


Asunto(s)
Anticuerpos Antiidiotipos/farmacología , Infecciones por VIH/terapia , Inmunoterapia Adoptiva , Replicación Viral/genética , Animales , Anticuerpos Antiidiotipos/inmunología , Células HEK293 , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , VIH-1/patogenicidad , Humanos , Ratones , Tonsila Palatina/inmunología , Tonsila Palatina/metabolismo , Cultivo Primario de Células , Bazo/inmunología , Bazo/metabolismo , Linfocitos T Citotóxicos/inmunología , Latencia del Virus/inmunología , Replicación Viral/inmunología
3.
PLoS One ; 14(1): e0211111, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30682089

RESUMEN

HIV-1 is the causative agent of AIDS (Autoimmune Deficiency Syndrome). HIV-1 infection results in systemic CD4+ T cell depletion, thereby impairing cell-mediated immunity. MicroRNAs are short (~22 nucleotides long), endogenous single-stranded RNA molecules that regulate gene expression by binding to the 3' untranslated regions (3' UTR) of mRNA transcripts. The relation between HIV-1 infection and human miRNA expression profile has been previously investigated, and studies have shown that the virus can alter miRNA expression and vice versa. Here, we broaden the understanding of the HIV-1 infection process, and show that miRNA-186, 210 and 222 are up-regulated following HIV-1 infection of human Sup-T1 cells. As a result, the host miRNA target genes: Dicer1 (Double-Stranded RNA-Specific Endoribonuclease), HRB (HIV-1 Rev-binding protein) and HIV-EP2 (Human Immunodeficiency Virus Type I Enhancer Binding Protein 2), are down-regulated. Moreover, testing the miRNA-gene anti- correlation on the Jurkat and the HeLa-MAGI cell lines demonstrated the ability of the miRNAs to down-regulate viral expression as well. To conclude, we found that human miR-186, 210 and 222 directly regulate the human genes Dicer1, HRB and HIV-EP2, thus may be filling key roles during HIV-1 replication and miRNA biogenesis. This finding may contribute to the development of new therapeutic strategies.


Asunto(s)
ARN Helicasas DEAD-box/biosíntesis , Proteínas de Unión al ADN/biosíntesis , Regulación hacia Abajo , Infecciones por VIH/metabolismo , VIH-1/fisiología , MicroARNs/metabolismo , Proteínas de Complejo Poro Nuclear/biosíntesis , Proteínas de Unión al ARN/biosíntesis , Ribonucleasa III/biosíntesis , Factores de Transcripción/biosíntesis , Replicación Viral/fisiología , Células HeLa , Humanos , Células Jurkat , Células MCF-7
4.
Retrovirology ; 12: 70, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26259899

RESUMEN

Retroviruses are among the best studied viruses in last decades due to their pivotal involvement in cellular processes and, most importantly, in causing human diseases, most notably-acquired immunodeficiency syndrome (AIDS) that is triggered by human immunodeficiency viruses types 1 and 2 (HIV-1 and HIV-2, respectively). Numerous studied were conducted to understand the involvement of the three cardinal retroviral enzymes, reverse transcriptase, integrase and protease, in the life cycle of the viruses. These studies have led to the development of many inhibitors of these enzymes as anti-retroviral specific drugs that are used for routine treatments of HIV/AIDS patients. Interestingly, a fourth virus-encoded enzyme, the deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) is also found in several major retroviral groups. The presence and the importance of this enzyme to the life cycle of retroviruses were usually overlooked by most retrovirologists, although the occurrence of dUTPases, particularly in beta-retroviruses and in non-primate retroviruses, is known for more than 20 years. Only more recently, retroviral dUTPases were brought into the limelight and were shown in several cases to be essential for viral replication. Therefore, it is likely that future studies on this enzyme will advance our knowledge to a level that will allow designing novel, specific and potent anti-dUTPase drugs that are effective in combating retroviral diseases. The aim of this review is to give concise background information on dUTPases in general and to summarize the most relevant data on retroviral dUTPases and their involvement in the replication processes and pathogenicity of the viruses, as well as in possibly-associated human diseases.


Asunto(s)
Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Retroviridae/enzimología , Replicación Viral , Animales , Infecciones por VIH/virología , VIH-1/enzimología , VIH-1/crecimiento & desarrollo , VIH-1/patogenicidad , VIH-2/enzimología , VIH-2/crecimiento & desarrollo , VIH-2/patogenicidad , Humanos , Filogenia , Retroviridae/clasificación , Retroviridae/patogenicidad , Retroviridae/fisiología , Alineación de Secuencia
5.
J Virol ; 86(11): 6222-30, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22491446

RESUMEN

The Tf1 retrotransposon represents a group of long terminal repeat retroelements that use an RNA self-primer for initiating reverse transcription while synthesizing the minus-sense DNA strand. Tf1 reverse transcriptase (RT) was found earlier to generate the self-primer in vitro. Here, we show that this RT can remove from the synthesized cDNA the entire self-primer as well as the complete polypurine tract (PPT) sequence (serving as a second primer for cDNA synthesis). However, these primer removals, mediated by the RNase H activity of Tf1 RT, are quite inefficient. Interestingly, the integrase of Tf1 stimulated the specific Tf1 RT-directed cleavage of both the self-primer and PPT, although there was no general enhancement of the RT's RNase H activity (and the integrase by itself is devoid of any primer cleavage). The RTs of two prototype retroviruses, murine leukemia virus and human immunodeficiency virus, showed only a partial and nonspecific cleavage of both Tf1-associated primers with no stimulation by Tf1 integrase. Mutagenesis of Tf1 integrase revealed that the complete Tf1 integrase protein (excluding its chromodomain) is required for stimulating the Tf1 RT primer removal activity. Nonetheless, a double mutant integrase that has lost its integration functions can still stimulate the RT's activity, though heat-inactivated integrase cannot enhance primer removals. These findings suggest that the enzymatic activity of Tf1 integrase is not essential for stimulating the RT-mediated primer removal, while the proper folding of this protein is obligatory for this function. These results highlight possible new functions of Tf1 integrase in the retrotransposon's reverse transcription process.


Asunto(s)
Integrasas/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , ARN/metabolismo , Retroelementos , ADN Complementario/metabolismo , VIH/enzimología , Integrasas/genética , Virus de la Leucemia Murina/enzimología , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , ADN Polimerasa Dirigida por ARN/genética , Ribonucleasa H/metabolismo
6.
FEBS J ; 279(10): 1894-903, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22443410

RESUMEN

We have recently shown that reverse transcriptases (RTs) perform template switches when there is a very short (two-nucleotide) complementarity between the 3' ends of the primer (donor) strand and the DNA or RNA template acceptor strands [Oz-Gleenberg et al. (2011) Nucleic Acids Res 39, 1042-1053]. These dinucleotide pairs are stabilized by RTs that are capable of 'clamping' together the otherwise unstable duplexes. This RT-driven stabilization of the micro-homology sequence promotes efficient DNA synthesis. In the present study, we have examined several factors associated with the sequence and structure of the DNA substrate that are critical for the clamp activity of RTs from human immunodeficiency virus type 1 (HIV-1), murine leukemia virus (MLV), bovine immunodeficiency virus (BIV) and the long terminal repeat retrotransposon Tf1. The parameters studied were the minimal complementarity length between the primer and functional template termini that sustains stable clamps, the effects of gaps between the two template strands on the clamp activity of the tested RTs, the effects of template end phosphorylations on the RT-associated clamp activities, and clamp activity with a long 'hairpin' double-stranded primer comprising both the primer and the complementary non-functional template strands. The results show that the substrate conditions for clamp activity of HIV-1 and MLV RTs are more stringent, while Tf1 and BIV RTs show clamp activity under less rigorous substrate conditions. These differences shed light on the dissimilarities in catalytic activities of RTs, and suggest that clamp activity may be a potential new target for anti-retroviral drugs.


Asunto(s)
ADN Viral/química , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ARN/química , Animales , Dominio Catalítico , Bovinos , ADN Viral/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , VIH-1/química , VIH-1/genética , VIH-1/metabolismo , Humanos , Virus de la Inmunodeficiencia Bovina/química , Virus de la Inmunodeficiencia Bovina/genética , Virus de la Inmunodeficiencia Bovina/metabolismo , Virus de la Leucemia Murina/química , Virus de la Leucemia Murina/genética , Virus de la Leucemia Murina/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Retroelementos , Especificidad por Sustrato , Moldes Genéticos
7.
FEBS J ; 279(1): 142-53, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22035236

RESUMEN

Reverse transcriptases (RTs) possess a non-templated addition (NTA) activity while synthesizing DNA with blunt-ended DNA primer/templates. Interestingly, the RT of the long terminal repeat retrotransposon Tf1 has an NTA activity that is substantially higher than that of HIV-1 or murine leukemia virus RTs. By performing steady state kinetics, we found that the differences between the NTA activities of Tf1 and HIV-1 RTs can be explained by the substantially lower K(M) value for the incoming dNTP of Tf1 RT (while the differences between the apparent k(cat) values of these two RTs are relatively small). Furthermore, the K(M) values, calculated for both RTs with the same dNTP, are much lower for the template-dependent synthesis (TDS) than those of NTA. However, TDS of HIV-1 RT is higher than that of Tf1 RT. The overall relative order of the apparent k(cat)/K(M) values for dATP is: HIV-1 RT (TDS) > Tf1 RT (TDS) >> Tf1 RT (NTA) > HIV-1 RT (NTA). Under the employed conditions, Tf1 RT can add up to seven nucleotides to the blunt-ended substrate, while the other RTs add mostly a single nucleotide. The NTA activity of Tf1 RT is restricted to DNA primers. Furthermore, the NTA activity of Tf1 and HIV-1 RTs is suppressed by ATP, as it competes with the incoming dATP (although ATP is not incorporated by the NTA activity of the RTs). The unusually high NTA activity of Tf1 RT can explain why, after completing cDNA synthesis, the in vivo generated Tf1 cDNA has relatively long extra sequences beyond the highly conserved CA at its 3'-ends.


Asunto(s)
Replicación del ADN , ADN Viral/genética , Transcriptasa Inversa del VIH/metabolismo , ARN Viral/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Retroelementos/genética , Secuencias Repetidas Terminales/genética , Adenosina Trifosfato/farmacología , Animales , Cartilla de ADN , Transcriptasa Inversa del VIH/genética , Humanos , Lentivirus/genética , Virus de la Leucemia Murina/genética , Virus de la Leucemia Murina/metabolismo , Ratones , Fenotipo , ADN Polimerasa Dirigida por ARN/genética , Moldes Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA