Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cardiovasc Res ; 119(6): 1403-1415, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-36418171

RESUMEN

AIMS: Circadian rhythms orchestrate important functions in the cardiovascular system: the contribution of microvascular rhythms to cardiovascular disease progression/severity is unknown. This study hypothesized that (i) myogenic reactivity in skeletal muscle resistance arteries is rhythmic and (ii) disrupting this rhythmicity would alter cardiac injury post-myocardial infarction (MI). METHODS AND RESULTS: Cremaster skeletal muscle resistance arteries were isolated and assessed using standard pressure myography. Circadian rhythmicity was globally disrupted with the ClockΔ19/Δ19 mutation or discretely through smooth muscle cell-specific Bmal1 deletion (Sm-Bmal1 KO). Cardiac structure and function were determined by echocardiographic, hemodynamic and histological assessments. Myogenic reactivity in cremaster muscle resistance arteries is rhythmic. This rhythm is putatively mediated by the circadian modulation of a mechanosensitive signalosome incorporating tumour necrosis factor and casein kinase 1. Following left anterior descending coronary artery ligation, myogenic responsiveness is locked at the circadian maximum, although circadian molecular clock gene expression cycles normally. Disrupting the molecular clock abolishes myogenic rhythmicity: myogenic tone is suspended at the circadian minimum and is no longer augmented by MI. The reduced myogenic tone in ClockΔ19/Δ19 mice and Sm-Bmal1 KO mice associates with reduced total peripheral resistance (TPR), improved cardiac function and reduced infarct expansion post-MI. CONCLUSIONS: Augmented microvascular constriction aggravates cardiac injury post-MI. Following MI, skeletal muscle resistance artery myogenic reactivity increases specifically within the rest phase, when TPR would normally decline. Disrupting the circadian clock interrupts the MI-induced augmentation in myogenic reactivity: therapeutics targeting the molecular clock, therefore, may be useful for improving MI outcomes.


Asunto(s)
Lesiones Cardíacas , Infarto del Miocardio , Ratones , Animales , Factores de Transcripción ARNTL/genética , Infarto del Miocardio/metabolismo , Corazón , Hemodinámica , Resistencia Vascular
2.
Front Physiol ; 11: 402, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477159

RESUMEN

Subarachnoid hemorrhage (SAH) is a devastating cerebral event caused by an aneurysmal rupture. In addition to neurological injury, SAH has significant effects on cardiac function and the peripheral microcirculation. Since these peripheral complications may exacerbate brain injury, the prevention and management of these peripheral effects are important for improving the overall clinical outcome after SAH. In this investigation, we examined the effects of SAH on cardiac function and vascular reactivity in a well-characterized blood injection model of SAH. Standard echocardiographic and blood pressure measurement procedures were utilized to assess cardiac function and hemodynamic parameters in vivo; we utilized a pressure myography approach to assess vascular reactivity in cremaster skeletal muscle resistance arteries ex vivo. We observed that elevated catecholamine levels in SAH stun the myocardium, reduce cardiac output and augment myogenic vasoconstriction in isolated cremaster arteries. These cardiac and vascular effects are driven by beta- and alpha-adrenergic receptor signaling, respectively. Clinically utilized adrenergic receptor antagonists can prevent cardiac injury and normalize vascular function. We found that tumor necrosis factor (TNF) gene deletion prevents the augmentation of myogenic reactivity in SAH: since membrane-bound TNF serves as a mechanosensor in the arteries assessed, alpha-adrenergic signaling putatively augments myogenic vasoconstriction by enhancing mechanosensor activity.

3.
JACC Basic Transl Sci ; 4(8): 940-958, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31909302

RESUMEN

Heart failure (HF) and subarachnoid hemorrhage (SAH) chronically reduce cerebral perfusion, which negatively affects clinical outcome. This work demonstrates a strong relationship between cerebral artery cystic fibrosis transmembrane conductance regulator (CFTR) expression and altered cerebrovascular reactivity in HF and SAH. In HF and SAH, CFTR corrector compounds (C18 or lumacaftor) normalize pathological alterations in cerebral artery CFTR expression, vascular reactivity, and cerebral perfusion, without affecting systemic hemodynamic parameters. This normalization correlates with reduced neuronal injury. Therefore, CFTR therapeutics have emerged as valuable clinical tools to manage cerebrovascular dysfunction, impaired cerebral perfusion, and neuronal injury.

4.
Circ Res ; 122(3): 405-416, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29273600

RESUMEN

RATIONALE: Aortic valve disease is a cell-mediated process without effective pharmacotherapy. CNP (C-type natriuretic peptide) inhibits myofibrogenesis and osteogenesis of cultured valve interstitial cells and is downregulated in stenotic aortic valves. However, it is unknown whether CNP signaling regulates aortic valve health in vivo. OBJECTIVE: The aim of this study is to determine whether a deficient CNP signaling axis in mice causes accelerated progression of aortic valve disease. METHODS AND RESULTS: In cultured porcine valve interstitial cells, CNP inhibited pathological differentiation via the guanylate cyclase NPR2 (natriuretic peptide receptor 2) and not the G-protein-coupled clearance receptor NPR3 (natriuretic peptide receptor 3). We used Npr2+/- and Npr2+/-;Ldlr-/- mice and wild-type littermate controls to examine the valvular effects of deficient CNP/NPR2 signaling in vivo, in the context of both moderate and advanced aortic valve disease. Myofibrogenesis in cultured Npr2+/- fibroblasts was insensitive to CNP treatment, whereas aged Npr2+/- and Npr2+/-;Ldlr-/- mice developed cardiac dysfunction and ventricular fibrosis. Aortic valve function was significantly impaired in Npr2+/- and Npr2+/-;Ldlr-/- mice versus wild-type littermates, with increased valve thickening, myofibrogenesis, osteogenesis, proteoglycan synthesis, collagen accumulation, and calcification. 9.4% of mice heterozygous for Npr2 had congenital bicuspid aortic valves, with worse aortic valve function, fibrosis, and calcification than those Npr2+/- with typical tricuspid aortic valves or all wild-type littermate controls. Moreover, cGK (cGMP-dependent protein kinase) activity was downregulated in Npr2+/- valves, and CNP triggered synthesis of cGMP and activation of cGK1 (cGMP-dependent protein kinase 1) in cultured porcine valve interstitial cells. Finally, aged Npr2+/-;Ldlr-/- mice developed dilatation of the ascending aortic, with greater aneurysmal progression in Npr2+/- mice with bicuspid aortic valves than those with tricuspid valves. CONCLUSIONS: Our data establish CNP/NPR2 signaling as a novel regulator of aortic valve development and disease and elucidate the therapeutic potential of targeting this pathway to arrest disease progression.


Asunto(s)
Aneurisma de la Aorta/genética , Válvula Aórtica/anomalías , Enfermedades de las Válvulas Cardíacas/genética , Péptido Natriurético Tipo-C/fisiología , Receptores del Factor Natriurético Atrial/deficiencia , Disfunción Ventricular Izquierda/genética , Animales , Aorta/patología , Aneurisma de la Aorta/fisiopatología , Válvula Aórtica/fisiopatología , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/fisiopatología , Enfermedad de la Válvula Aórtica Bicúspide , Calcinosis/genética , Calcinosis/fisiopatología , Células Cultivadas , Colágeno/biosíntesis , GMP Cíclico/fisiología , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Matriz Extracelular/patología , Hiperlipidemias/complicaciones , Hiperlipidemias/genética , Ratones , Ratones Noqueados , Miofibroblastos/citología , Péptido Natriurético Tipo-C/farmacología , Osteogénesis , Proteoglicanos/biosíntesis , Receptores del Factor Natriurético Atrial/fisiología , Receptores de LDL/deficiencia , Receptores de LDL/genética , Porcinos , Disfunción Ventricular Izquierda/fisiopatología
5.
Mol Metab ; 6(11): 1339-1349, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29107282

RESUMEN

OBJECTIVES: Glucagon-like peptide-1 (GLP-1) is secreted from enteroendocrine cells and exerts a broad number of metabolic actions through activation of a single GLP-1 receptor (GLP-1R). The cardiovascular actions of GLP-1 have garnered increasing attention as GLP-1R agonists are used to treat human subjects with diabetes and obesity that may be at increased risk for development of heart disease. Here we studied mechanisms linking GLP-1R activation to control of heart rate (HR) in mice. METHODS: The actions of GLP-1R agonists were examined on the control of HR in wild type mice (WT) and in mice with cardiomyocyte-selective disruption of the GLP-1R (Glp1rCM-/-). Complimentary studies examined the effects of GLP-1R agonists in mice co-administered propranolol or atropine. The direct effects of GLP-1R agonism on HR and ventricular developed pressure were examined in isolated perfused mouse hearts ex vivo, and atrial depolarization was quantified in mouse hearts following direct application of liraglutide to perfused atrial preparations ex vivo. RESULTS: Doses of liraglutide and lixisenatide that were equipotent for acute glucose control rapidly increased HR in WT and Glp1rCM-/- mice in vivo. The actions of liraglutide to increase HR were more sustained relative to lixisenatide, and diminished in Glp1rCM-/- mice. The acute chronotropic actions of GLP-1R agonists were attenuated by propranolol but not atropine. Neither native GLP-1 nor lixisenatide increased HR or developed pressure in perfused hearts ex vivo. Moreover, liraglutide had no direct effect on sinoatrial node firing rate in mouse atrial preparations ex vivo. Despite co-localization of HCN4 and GLP-1R in primate hearts, HCN4-directed Cre expression did not attenuate levels of Glp1r mRNA transcripts, but did reduce atrial Gcgr expression in the mouse heart. CONCLUSIONS: GLP-1R agonists increase HR through multiple mechanisms, including regulation of autonomic nervous system function, and activation of the atrial GLP-1R. Surprisingly, the isolated atrial GLP-1R does not transduce a direct chronotropic effect following exposure to GLP-1R agonists in the intact heart, or isolated atrium, ex vivo. Hence, cardiac GLP-1R circuits controlling HR require neural inputs and do not function in a heart-autonomous manner.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/fisiología , Frecuencia Cardíaca/fisiología , Animales , Sistema Nervioso Autónomo/fisiología , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Liraglutida/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Péptidos/farmacología
6.
Nat Commun ; 8: 14805, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28378814

RESUMEN

Tumour necrosis factor (TNF) is a ubiquitously expressed cytokine with functions beyond the immune system. In several diseases, the induction of TNF expression in resistance artery smooth muscle cells enhances microvascular myogenic vasoconstriction and perturbs blood flow. This pathological role prompted our hypothesis that constitutively expressed TNF regulates myogenic signalling and systemic haemodynamics under non-pathological settings. Here we show that acutely deleting the TNF gene in smooth muscle cells or pharmacologically scavenging TNF with etanercept (ETN) reduces blood pressure and resistance artery myogenic responsiveness; the latter effect is conserved across five species, including humans. Changes in transmural pressure are transduced into intracellular signals by membrane-bound TNF (mTNF) that connect to a canonical myogenic signalling pathway. Our data positions mTNF 'reverse signalling' as an integral element of a microvascular mechanosensor; pathologic or therapeutic perturbations of TNF signalling, therefore, necessarily affect microvascular tone and systemic haemodynamics.


Asunto(s)
Presión Sanguínea/fisiología , Músculo Liso Vascular/metabolismo , Factor de Necrosis Tumoral alfa/fisiología , Animales , Perros , Etanercept/farmacología , Femenino , Insuficiencia Cardíaca/prevención & control , Humanos , Masculino , Mesocricetus , Ratones Endogámicos C57BL , Ratones Noqueados , Microcirculación , Músculo Esquelético/metabolismo , Transducción de Señal/fisiología , Especificidad de la Especie , Porcinos , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo , Vasoconstricción
7.
J Biol Chem ; 287(34): 28966-74, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22753418

RESUMEN

Regulator of G-protein signaling (RGS) proteins are potent inhibitors of heterotrimeric G-protein signaling. RGS4 attenuates G-protein activity in several tissues. Previous work demonstrated that cysteine palmitoylation on residues in the amino-terminal (Cys-2 and Cys-12) and core domains (Cys-95) of RGS4 is important for protein stability, plasma membrane targeting, and GTPase activating function. To date Cys-2 has been the priority target for RGS4 regulation by palmitoylation based on its putative role in stabilizing the RGS4 protein. Here, we investigate differences in the contribution of Cys-2 and Cys-12 to the intracellular localization and function of RGS4. Inhibition of RGS4 palmitoylation with 2-bromopalmitate dramatically reduced its localization to the plasma membrane. Similarly, mutation of the RGS4 amphipathic helix (L23D) prevented membrane localization and its G(q) inhibitory function. Together, these data suggest that both RGS4 palmitoylation and the amphipathic helix domain are required for optimal plasma membrane targeting and function of RGS4. Mutation of Cys-12 decreased RGS4 membrane targeting to a similar extent as 2-bromopalmitate, resulting in complete loss of its G(q) inhibitory function. Mutation of Cys-2 did not impair plasma membrane targeting but did partially impair its function as a G(q) inhibitor. Comparison of the endosomal distribution pattern of wild type and mutant RGS4 proteins with TGN38 indicated that palmitoylation of these two cysteines contributes differentially to the intracellular trafficking of RGS4. These data show for the first time that Cys-2 and Cys-12 play markedly different roles in the regulation of RGS4 membrane localization, intracellular trafficking, and G(q) inhibitory function via mechanisms that are unrelated to RGS4 protein stabilization.


Asunto(s)
Membrana Celular/metabolismo , Cisteína/metabolismo , Lipoilación/fisiología , Transporte de Proteínas/fisiología , Proteínas RGS/metabolismo , Sustitución de Aminoácidos , Membrana Celular/genética , Cisteína/genética , Endosomas/genética , Endosomas/metabolismo , Activación Enzimática/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutación Missense , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas RGS/genética
8.
Circulation ; 126(2): 196-206, 2012 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-22668972

RESUMEN

BACKGROUND: Heart failure is associated with neurological deficits, including cognitive dysfunction. However, the molecular mechanisms underlying reduced cerebral blood flow in the early stages of heart failure, particularly when blood pressure is minimally affected, are not known. METHODS AND RESULTS: Using a myocardial infarction model in mice, we demonstrate a tumor necrosis factor-α (TNFα)-dependent enhancement of posterior cerebral artery tone that reduces cerebral blood flow before any overt changes in brain structure and function. TNFα expression is increased in mouse posterior cerebral artery smooth muscle cells at 6 weeks after myocardial infarction. Coordinately, isolated posterior cerebral arteries display augmented myogenic tone, which can be fully reversed in vitro by the competitive TNFα antagonist etanercept. TNFα mediates its effect via a sphingosine-1-phosphate (S1P)-dependent mechanism, requiring sphingosine kinase 1 and the S1P(2) receptor. In vivo, sphingosine kinase 1 deletion prevents and etanercept (2-week treatment initiated 6 weeks after myocardial infarction) reverses the reduction of cerebral blood flow, without improving cardiac function. CONCLUSIONS: Cerebral artery vasoconstriction and decreased cerebral blood flow occur early in an animal model of heart failure; these perturbations are reversed by interrupting TNFα/S1P signaling. This signaling pathway may represent a potential therapeutic target to improve cognitive function in heart failure.


Asunto(s)
Arterias Cerebrales/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Lisofosfolípidos/fisiología , Desarrollo de Músculos/fisiología , Músculo Liso Vascular/fisiopatología , Transducción de Señal/fisiología , Esfingosina/análogos & derivados , Factor de Necrosis Tumoral alfa/fisiología , Animales , Arterias Cerebrales/patología , Etanercept , Inmunoglobulina G/farmacología , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Receptores de Lisoesfingolípidos/deficiencia , Receptores de Lisoesfingolípidos/genética , Receptores de Lisoesfingolípidos/fisiología , Receptores del Factor de Necrosis Tumoral , Flujo Sanguíneo Regional/efectos de los fármacos , Flujo Sanguíneo Regional/fisiología , Esfingosina/fisiología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Vasoconstricción/efectos de los fármacos , Vasoconstricción/fisiología
9.
Proc Natl Acad Sci U S A ; 108(42): 17544-9, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-21976486

RESUMEN

Cells sense and respond to changes in oxygen concentration through gene regulatory processes that are fundamental to survival. Surprisingly, little is known about how anemia affects hypoxia signaling. Because nitric oxide synthases (NOSs) figure prominently in the cellular responses to acute hypoxia, we defined the effects of NOS deficiency in acute anemia. In contrast to endothelial NOS or inducible NOS deficiency, neuronal NOS (nNOS)(-/-) mice demonstrated increased mortality during anemia. Unlike wild-type (WT) animals, anemia did not increase cardiac output (CO) or reduce systemic vascular resistance (SVR) in nNOS(-/-) mice. At the cellular level, anemia increased expression of HIF-1α protein and HIF-responsive mRNA levels (EPO, VEGF, GLUT1, PDK1) in the brain of WT, but not nNOS(-/-) mice, despite comparable reductions in tissue PO(2). Paradoxically, nNOS(-/-) mice survived longer during hypoxia, retained the ability to regulate CO and SVR, and increased brain HIF-α protein levels and HIF-responsive mRNA transcripts. Real-time imaging of transgenic animals expressing a reporter HIF-α(ODD)-luciferase chimeric protein confirmed that nNOS was essential for anemia-mediated increases in HIF-α protein stability in vivo. S-nitrosylation effects the functional interaction between HIF and pVHL. We found that anemia led to nNOS-dependent S-nitrosylation of pVHL in vivo and, of interest, led to decreased expression of GSNO reductase. These findings identify nNOS effects on the HIF/pVHL signaling pathway as critically important in the physiological responses to anemia in vivo and provide essential mechanistic insight into the differences between anemia and hypoxia.


Asunto(s)
Anemia/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Adaptación Fisiológica , Anemia/genética , Animales , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Gasto Cardíaco , Células Endoteliales de la Vena Umbilical Humana , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo I/deficiencia , Óxido Nítrico Sintasa de Tipo I/genética , Oxígeno/sangre , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Resistencia Vascular , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
10.
Circ Arrhythm Electrophysiol ; 4(5): 733-42, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21747058

RESUMEN

BACKGROUND: Chronic iron overload (CIO) is associated with blood disorders such as thalassemias and hemochromatosis. A major prognostic indicator of survival in patients with CIO is iron-mediated cardiomyopathy characterized by contractile dysfunction and electrical disturbances, including slow heart rate (bradycardia) and heart block. METHODS AND RESULTS: We used a mouse model of CIO to investigate the effects of iron on sinoatrial node (SAN) function. As in humans, CIO reduced heart rate (≈20%) in conscious mice as well as in anesthetized mice with autonomic nervous system blockade and in isolated Langendorff-perfused mouse hearts, suggesting that bradycardia originates from altered intrinsic SAN pacemaker function. Indeed, spontaneous action potential frequencies in SAN myocytes with CIO were reduced in association with decreased L-type Ca(2+) current (I(Ca,L)) densities and positive (rightward) voltage shifts in I(Ca,L) activation. Pacemaker current (I(f)) was not affected by CIO. Because I(Ca,L) in SAN myocytes (as well as in atrial and conducting system myocytes) activates at relatively negative potentials due to the presence of Ca(V)1.3 channels (in addition to Ca(V)1.2 channels), our data suggest that elevated iron preferentially suppresses Ca(V)1.3 channel function. Consistent with this suggestion, CIO reduced Ca(V)1.3 mRNA levels by ≈40% in atrial tissue (containing SAN) and did not lower heart rate in Ca(V)1.3 knockout mice. CIO also induced PR-interval prolongation, heart block, and atrial fibrillation, conditions also seen in Ca(V)1.3 knockout mice. CONCLUSIONS: Our results demonstrate that CIO selectively reduces Ca(V)1.3-mediated I(Ca,L), leading to bradycardia, slowing of electrical conduction, and atrial fibrillation as seen in patients with iron overload.


Asunto(s)
Fibrilación Atrial/fisiopatología , Bradicardia/fisiopatología , Canales de Calcio Tipo L/fisiología , Sistema de Conducción Cardíaco/fisiopatología , Hierro/efectos adversos , Animales , Fibrilación Atrial/etiología , Bradicardia/etiología , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/genética , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sistema de Conducción Cardíaco/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Hierro/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Nodo Sinoatrial/efectos de los fármacos , Nodo Sinoatrial/fisiopatología
11.
Endocrinology ; 152(2): 436-46, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21159855

RESUMEN

IGF-I, a known secretory product of intestinal subepithelial myofibroblasts (ISEMFs), is essential for the intestinotropic effects of glucagon-like peptide-2 (GLP-2). Furthermore, GLP-2 increases IGF-I mRNA transcript levels in vitro in heterogeneous fetal rat intestinal cultures, as well as in vivo in the rodent small intestine. To determine the mechanism underlying the stimulatory effect of GLP-2 on intestinal IGF-I mRNA, murine ISEMF cells were placed into primary culture. Immunocytochemistry showed that the ISEMF cells appropriately expressed α-smooth muscle actin and vimentin but not desmin. The cells also expressed GLP-2 receptor and IGF-I mRNA transcripts. Treatment of ISEMF cells with (Gly2)GLP-2 induced IGF-I mRNA transcripts by up to 5-fold of basal levels after treatment with 10(-8) m GLP-2 for 2 h (P < 0.05) but did not increase transcript levels for other intestinal growth factors, such as ErbB family members. Immunoblot revealed a 1.6-fold increase in phospho (p)-Akt/total-(t)Akt with 10(-8) m GLP-2 treatment (P < 0.05) but no changes in cAMP, cAMP-dependent ß-galactosidase expression, pcAMP response element-binding protein/tcAMP response element-binding protein, pErk1/2/tErk1/2, or intracellular calcium. Furthermore, pretreatment of ISEMF cells with the phosphatidylinositol 3 kinase (PI3K) inhibitors, LY294002 and wortmannin, abrogated the IGF-I mRNA response to GLP-2, as did overexpression of kinase-dead Akt. The role of PI3K/Akt in GLP-2-induced IGF-I mRNA levels in the murine jejunum was also confirmed in vivo. These findings implicate the PI3K/Akt pathway in the stimulatory effects of GLP-2 to enhance intestinal IGF-I mRNA transcript levels and provide further evidence in support of a role for IGF-I produced by the ISEMF cells in the intestinotropic effects of GLP-2.


Asunto(s)
Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Péptido 2 Similar al Glucagón/farmacología , Factor I del Crecimiento Similar a la Insulina/genética , Intestinos/citología , ARN Mensajero/genética , Androstadienos/farmacología , Animales , Cromonas/farmacología , AMP Cíclico/metabolismo , Femenino , Receptor del Péptido 2 Similar al Glucagón , Humanos , Inmunohistoquímica , Masculino , Ratones , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Receptores de Glucagón/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Wortmanina
12.
Eur J Neurosci ; 26(2): 275-88, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17650106

RESUMEN

Homeostatic plasticity is important to stabilize the activity level of neuronal circuits. Molecular mechanisms underlying neuronal homeostatic plasticity in response to activity deprivation are not completely understood. We found that prolonged alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor blockade by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) resulted in larger, faster miniature excitatory postsynaptic current (mEPSC) events with enhanced frequency in cultured forebrain cortical neurons. Furthermore, GluR1 protein level and CREB-dependent transcription were up-regulated. Blockade of L-type Ca(2+) channels but not kainate receptors produced similar effects to the AMPA receptor blockade. Genetic deletion of AC1 (adenylyl cyclase 1), but not AC8, a key neuronal adenylyl cyclase, significantly reduced inactivity-induced GluR1 changes. Our results indicate the synthesis of homomeric GluR1 AMPA receptors and their possible insertion into synapses due to synaptic inactivity in the cortex. AC1 plays a subtype selective role in this process by coupling signals from L-type Ca(2+) channels to downstream signalling pathways.


Asunto(s)
Adenilil Ciclasas/genética , Adenilil Ciclasas/fisiología , Corteza Cerebral/enzimología , Corteza Cerebral/fisiología , Neuronas/enzimología , Neuronas/fisiología , Sinapsis/enzimología , Sinapsis/fisiología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Western Blotting , Canales de Calcio Tipo L/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , AMP Cíclico/fisiología , Interpretación Estadística de Datos , Electrofisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Genes Reporteros/genética , Luciferasas/genética , Luciferasas/metabolismo , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Prosencéfalo/enzimología , Prosencéfalo/fisiología , Receptores AMPA/efectos de los fármacos , Receptores de Ácido Kaínico/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA