Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS One ; 11(2): e0148323, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26863115

RESUMEN

RATIONALE: Neonatal respiratory distress syndrome is a restrictive lung disease characterized by surfactant deficiency. Decreased vascular endothelial growth factor (VEGF), which demonstrates important roles in angiogenesis and vasculogenesis, has been implicated in the pathogenesis of restrictive lung diseases. Current animal models investigating VEGF in the etiology and outcomes of RDS require premature delivery, hypoxia, anatomically or temporally limited inhibition, or other supplemental interventions. Consequently, little is known about the isolated effects of chronic VEGF inhibition, started at birth, on subsequent developing lung structure and function. OBJECTIVES: To determine whether inducible, mesenchyme-specific VEGF inhibition in the neonatal mouse lung results in long-term modulation of AECII and whole lung function. METHODS: Triple transgenic mice expressing the soluble VEGF receptor sFlt-1 specifically in the mesenchyme (Dermo-1/rtTA/sFlt-1) were generated and compared to littermate controls at 3 months to determine the impact of neonatal downregulation of mesenchymal VEGF expression on lung structure, cell composition and function. Reduced tissue VEGF bioavailability has previously been demonstrated with this model. MEASUREMENTS AND MAIN RESULTS: Triple transgenic mice demonstrated restrictive lung pathology. No differences in gross vascular development or protein levels of vascular endothelial markers was noted, but there was a significant decrease in perivascular smooth muscle and type I collagen. Mutants had decreased expression levels of surfactant protein C and hypoxia inducible factor 1-alpha without a difference in number of type II pneumocytes. CONCLUSIONS: These data show that mesenchyme-specific inhibition of VEGF in neonatal mice results in late restrictive disease, making this transgenic mouse a novel model for future investigations on the consequences of neonatal RDS and potential interventions.


Asunto(s)
Enfermedades Pulmonares/metabolismo , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Mesodermo/metabolismo , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Apoptosis , Peso Corporal , Colágeno/química , Femenino , Regulación de la Expresión Génica , Hidroxiprolina/química , Modelos Lineales , Masculino , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa , Pruebas de Función Respiratoria , Transducción de Señal , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética
2.
Am J Respir Cell Mol Biol ; 54(3): 319-30, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26203800

RESUMEN

Type 2 alveolar epithelial cells (AEC2) are regarded as the progenitor population of the alveolus responsible for injury repair and homeostatic maintenance. Depletion of this population is hypothesized to underlie various lung pathologies. Current models of lung injury rely on either uncontrolled, nonspecific destruction of alveolar epithelia or on targeted, nontitratable levels of fixed AEC2 ablation. We hypothesized that discrete levels of AEC2 ablation would trigger stereotypical and informative patterns of repair. To this end, we created a transgenic mouse model in which the surfactant protein-C promoter drives expression of a mutant SR39TK herpes simplex virus-1 thymidine kinase specifically in AEC2. Because of the sensitivity of SR39TK, low doses of ganciclovir can be administered to these animals to induce dose-dependent AEC2 depletion ranging from mild (50%) to lethal (82%) levels. We demonstrate that specific levels of AEC2 depletion cause altered expression patterns of apoptosis and repair proteins in surviving AEC2 as well as distinct changes in distal lung morphology, pulmonary function, collagen deposition, and expression of remodeling proteins in whole lung that persist for up to 60 days. We believe SPCTK mice demonstrate the utility of cell-specific expression of the SR39TK transgene for exerting fine control of target cell depletion. Our data demonstrate, for the first time, that specific levels of type 2 alveolar epithelial cell depletion produce characteristic injury repair outcomes. Most importantly, use of these mice will contribute to a better understanding of the role of AEC2 in the initiation of, and response to, lung injury.


Asunto(s)
Células Epiteliales Alveolares/patología , Lesión Pulmonar/patología , Fibrosis Pulmonar/patología , Regeneración , Células Epiteliales Alveolares/enzimología , Animales , Apoptosis , Proliferación Celular , Forma de la Célula , Células Cultivadas , Colágeno/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Ganciclovir/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Predisposición Genética a la Enfermedad , Humanos , Hiperoxia/complicaciones , Lesión Pulmonar/genética , Lesión Pulmonar/metabolismo , Lesión Pulmonar/fisiopatología , Ratones Transgénicos , Fenotipo , Regiones Promotoras Genéticas , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/fisiopatología , Proteína C Asociada a Surfactante Pulmonar/genética , Simplexvirus/enzimología , Simplexvirus/genética , Timidina Quinasa/genética , Timidina Quinasa/metabolismo , Factores de Tiempo , Proteínas Virales/genética , Proteínas Virales/metabolismo
3.
Pediatr Res ; 72(5): 446-54, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22902433

RESUMEN

Congenital urinary tract obstruction (diagnosed antenatally by ultrasound screening) is one of the main causes of end-stage kidney disease in children. The extent of kidney injury in early gestation and the resultant abnormality in kidney development determine fetal outcome and postnatal renal function. Unfortunately, the current approach to diagnostic evaluation of the severity of injury has inherently poor diagnostic and prognostic value because it is based on the assessment of fetal tubular function from fetal urine samples rather than on estimates of the dysplastic changes in the injured developing kidney. To improve the outcome in children with congenital urinary tract obstruction, new biomarkers reflecting these structural changes are needed. Genomic and proteomic techniques that have emerged in the past decade can help identify the key genes and proteins from biological fluids, including amniotic fluid, that might reflect the extent of injury to the developing kidney.


Asunto(s)
Enfermedades Renales/diagnóstico , Enfermedades Renales/etiología , Riñón/metabolismo , Enfermedades Urológicas/congénito , Enfermedades Urológicas/diagnóstico , Animales , Biomarcadores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Marcadores Genéticos , Genómica , Edad Gestacional , Tasa de Filtración Glomerular , Humanos , Riñón/embriología , Riñón/fisiopatología , Enfermedades Renales/metabolismo , Enfermedades Renales/fisiopatología , Enfermedades Renales/prevención & control , Fallo Renal Crónico/diagnóstico , Fallo Renal Crónico/etiología , Fallo Renal Crónico/genética , Fallo Renal Crónico/metabolismo , Valor Predictivo de las Pruebas , Pronóstico , Índice de Severidad de la Enfermedad , Ultrasonografía Prenatal , Enfermedades Urológicas/complicaciones , Enfermedades Urológicas/metabolismo , Enfermedades Urológicas/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA