Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Front Immunol ; 15: 1347835, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495883

RESUMEN

Vitamin D3 regulates a variety of biological processes irrespective of its well-known importance for calcium metabolism. Epidemiological and animal studies indicate a role in immune regulation, intestinal barrier function and microbiome diversity. Here, we analyzed the impact of different vitamin D3- containing diets on C57BL/6 and BALB/c mice, with a particular focus on gut homeostasis and also investigated effects on immune cells in vitro. Weak regulatory effects were detected on murine T cells. By trend, the active vitamin D3 metabolite 1,25-dihydroxyvitamin D3 suppressed IFN, GM-CSF and IL-10 cytokine secretion in T cells of C57BL/6 but not BALB/c mice, respectively. Using different vitamin D3-fortified diets, we found a tissue-specific enrichment of mainly CD11b+ myeloid cells but not T cells in both mouse strains e.g. in spleen and Peyer's Patches. Mucin Reg3γ and Batf expression, as well as important proteins for gut homeostasis, were significantly suppressed in the small intestine of C57BL76 but not BALB/c mice fed with a high-vitamin D3 containing diet. Differences between both mouse stains were not completely explained by differences in vitamin D3 receptor expression which was strongly expressed in epithelial cells of both strains. Finally, we analyzed gut microbiome and again an impact of vitamin D3 was detected in C57BL76 but not BALB/c. Our data suggest strain-specific differences in vitamin D3 responsiveness under steady state conditions which may have important implications when choosing a murine disease model to study vitamin D3 effects.


Asunto(s)
Colecalciferol , Intestino Delgado , Ratones , Animales , Colecalciferol/farmacología , Ratones Endogámicos C57BL , Células Epiteliales , Dieta
2.
Cell Rep ; 43(3): 113929, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38457343

RESUMEN

Neutrophil-derived bactericidal/permeability-increasing protein (BPI) is known for its bactericidal activity against gram-negative bacteria and neutralization of lipopolysaccharide. Here, we define BPI as a potent activator of murine dendritic cells (DCs). As shown in GM-CSF-cultured, bone-marrow-derived cells (BMDCs), BPI induces a distinct stimulation profile including IL-2, IL-6, and tumor necrosis factor expression. Conventional DCs also respond to BPI, while M-CSF-cultivated or peritoneal lavage macrophages do not. Subsequent to BPI stimulation of BMDCs, CD4+ T cells predominantly secrete IL-22 and, when naive, preferentially differentiate into T helper 22 (Th22) cells. Congruent with the tissue-protective properties of IL-22 and along with impaired IL-22 induction, disease severity is significantly increased during dextran sodium sulfate-induced colitis in BPI-deficient mice. Importantly, physiological diversification of intestinal microbiota fosters BPI-dependent IL-22 induction in CD4+ T cells derived from mesenteric lymph nodes. In conclusion, BPI is a potent activator of DCs and consecutive Th22 cell differentiation with substantial relevance in intestinal homeostasis.


Asunto(s)
Linfocitos T Colaboradores-Inductores , Factor de Necrosis Tumoral alfa , Animales , Ratones , Factor de Necrosis Tumoral alfa/metabolismo , Células Cultivadas , Células Dendríticas/metabolismo , Permeabilidad
3.
Nat Cancer ; 5(1): 187-208, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38172339

RESUMEN

The microbiome is a predictor of clinical outcome in patients receiving allogeneic hematopoietic stem cell transplantation (allo-SCT). Microbiota-derived metabolites can modulate these outcomes. How bacteria, fungi and viruses contribute to the production of intestinal metabolites is still unclear. We combined amplicon sequencing, viral metagenomics and targeted metabolomics from stool samples of patients receiving allo-SCT (n = 78) and uncovered a microbiome signature of Lachnospiraceae and Oscillospiraceae and their associated bacteriophages, correlating with the production of immunomodulatory metabolites (IMMs). Moreover, we established the IMM risk index (IMM-RI), which was associated with improved survival and reduced relapse. A high abundance of short-chain fatty acid-biosynthesis pathways, specifically butyric acid via butyryl-coenzyme A (CoA):acetate CoA-transferase (BCoAT, which catalyzes EC 2.8.3.8) was detected in IMM-RI low-risk patients, and virome genome assembly identified two bacteriophages encoding BCoAT as an auxiliary metabolic gene. In conclusion, our study identifies a microbiome signature associated with protective IMMs and provides a rationale for considering metabolite-producing consortia and metabolite formulations as microbiome-based therapies.


Asunto(s)
Bacteriófagos , Trasplante de Células Madre Hematopoyéticas , Humanos , Bacteriófagos/genética , Heces/microbiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Bacterias/genética , Bacterias/metabolismo , Ácido Butírico/metabolismo
4.
Cell Rep Med ; 4(7): 101125, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37467715

RESUMEN

Acute graft-versus-host disease (aGvHD) is a significant complication after allogeneic hematopoietic stem cell transplantation (aHSCT), but major factors determining disease severity are not well defined yet. By combining multiplexed tissue imaging and single-cell RNA sequencing on gastrointestinal biopsies from aHSCT-treated individuals with fecal microbiome analysis, we link high microbiome diversity and the abundance of short-chain fatty acid-producing bacteria to the sustenance of suppressive regulatory T cells (Tregs). Furthermore, aGvHD severity strongly associates with the clonal expansion of mainly CD8 T cells, which we find distributed over anatomically distant regions of the gut, persistent over time, and inversely correlated with the presence of suppressive Tregs. Overall, our study highlights the pathophysiological importance of expanded CD8 T cell clones in the progression of aGvHD toward more severe clinical manifestations and strongly supports the further development of microbiome interventions as GvHD treatment via repopulation of the gut Treg niche to suppress inflammation.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Microbiota , Humanos , Enfermedad Injerto contra Huésped/patología , Microbiota/genética , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Tracto Gastrointestinal/patología , Linfocitos T CD8-positivos/patología
5.
Clin Infect Dis ; 77(10): 1432-1439, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37386935

RESUMEN

BACKGROUND: Intestinal microbiome contributes to the pathophysiology of acute gastrointestinal (GI) graft-versus-host disease (GvHD) and loss of microbiome diversity influences the outcome of patients after allogeneic stem cell transplantation (SCT). Systemic broad-spectrum antibiotics have been identified as a major cause of early intestinal dysbiosis. METHODS: In 2017, our transplant unit at the university hospital in Regensburg changed the antibiotic strategy from a permissive way with initiation of antibiotics in all patients with neutropenic fever independent of the underlying cause and risk to a restrictive use in cases with high likelihood of cytokine release syndrome (eg, after anti-thymocyte globulin [ATG] therapy). We analyzed clinical data and microbiome parameters obtained 7 days after allogeneic SCT from 188 patients with ATG therapy transplanted in 2015/2016 (permissive cohort, n = 101) and 2918/2019 (restrictive cohort, n = 87). RESULTS: Restrictive antibiotic treatment postponed the beginning of antibiotic administration from 1.4 ± 7.6 days prior to 1.7 ± 5.5 days after SCT (P = .01) and significantly reduced the duration of antibiotic administration by 5.8 days (P < .001) without increase in infectious complications. Furthermore, we observed beneficial effects of the restrictive strategy compared with the permissive way on microbiome diversity (urinary 3-indoxylsulfate, P = .01; Shannon and Simpson indices, P < .001) and species abundance 7 days post-transplant as well as a positive trend toward a reduced incidence of severe GI GvHD (P = .1). CONCLUSIONS: Our data indicate that microbiota protection can be achieved by a more careful selection of neutropenic patients qualifying for antibiotic treatment during allogeneic SCT without increased risk of infectious complications.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Microbiota , Humanos , Antibacterianos/farmacología , Síndrome de Liberación de Citoquinas/complicaciones , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Trasplante Homólogo/efectos adversos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Enfermedad Injerto contra Huésped/prevención & control , Enfermedad Injerto contra Huésped/etiología , Fiebre/etiología , Suero Antilinfocítico
6.
Blood Adv ; 7(7): 1326-1335, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36350750

RESUMEN

Intestinal microbiome diversity plays an important role in the pathophysiology of acute gastrointestinal (GI) graft-versus-host disease (GVHD) and influences the outcome of patients after allogeneic stem cell transplantation (ASCT). We analyzed clinical data and blood samples taken preconditioning and on the day of ASCT from 587 patients from 7 German centers of the Mount Sinai Acute GVHD International Consortium, dividing them into single-center test (n = 371) and multicenter validation (n = 216) cohorts. Regenerating islet-derived 3α (Reg3α) serum concentration of day 0 correlated with clinical data as well as urinary 3-indoxylsulfate (3-IS) and Clostridiales group XIVa, indicators of intestinal microbiome diversity. High Reg3α concentration at day 0 of ASCT was associated with higher 1-year transplant-related mortality (TRM) in both cohorts (P < .001). Cox regression analysis revealed high Reg3α at day 0 as an independent prognostic factor for 1-year TRM. Multivariable analysis showed an independent correlation of high Reg3α concentrations at day 0 with early systemic antibiotic (AB) treatment. Urinary 3-IS (P = .04) and Clostridiales group XIVa (P = .004) were lower in patients with high vs those with low day 0 Reg3α concentrations. In contrast, Reg3α concentrations before conditioning therapy correlated neither with TRM nor disease or treatment-related parameters. Reg3α, a known biomarker of acute GI GVHD correlates with intestinal dysbiosis, induced by early AB treatment in the period of pretransplant conditioning. Serum concentrations of Reg3α measured on the day of graft infusion are predictive of the risk for TRM of ASCT recipients.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Humanos , Antibacterianos , Biomarcadores , Enfermedad Injerto contra Huésped/diagnóstico , Enfermedad Injerto contra Huésped/etiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante Homólogo
7.
Front Immunol ; 13: 1028850, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36341397

RESUMEN

The vitamin D receptor (VDR) is critical in regulating intestinal homeostasis and emerging evidence demonstrates that VDR deficiency is a critical factor in inflammatory bowel disease pathology. However, no clinical data exist regarding the intestinal expression of VDR in patients after allogeneic haematopoietic stem cell transplantation (HSCT). Analyzing intestinal biopsies from 90 patients undergoing HSCT with mortality follow-up, we demonstrated that patients with severe acute gastrointestinal graft versus host disease (GI-GvHD) showed significant downregulation of VDR gene expression compared to mild or no acute GI-GvHD patients (p = 0.007). Reduced VDR expression was already detectable at acute GI-GvHD onset compared to GvHD-free patients (p = 0.01). These results were confirmed by immunohistochemistry (IHC) where patients with severe acute GI-GvHD showed fewer VDR+ cells (p = 0.03) and a reduced VDR staining score (p = 0.02) as compared to mild or no acute GI-GvHD patients. Accordingly, low VDR gene expression was associated with a higher cumulative incidence of treatment-related mortality (TRM) (p = 1.6x10-6) but not with relapse-related mortality (RRM). A multivariate Cox regression analysis identified low VDR as an independent risk factor for TRM (p = 0.001, hazard ratio 4.14, 95% CI 1.78-9.63). Furthermore, VDR gene expression significantly correlated with anti-microbial peptides (AMPs) gene expression (DEFA5: r = 0.637, p = 7x10-5, DEFA6: r 0 0.546, p = 0.001). In conclusion, our findings suggest an essential role of the VDR in the pathogenesis of gut GvHD and the prognosis of patients undergoing HSCT.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Humanos , Enfermedad Aguda , Regulación hacia Abajo , Enfermedad Injerto contra Huésped/genética , Receptores de Calcitriol/genética
8.
Front Immunol ; 13: 857400, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572572

RESUMEN

The role of IL-22 in adult patients undergoing allogeneic stem cell transplantation (SCT) is of major interest since animal studies showed a protective and regenerative effect of IL-22 in graft versus host disease (GvHD). However, no clinical data exist on the tissue expression. Here we demonstrate that patients not suffering from transplant-related mortality (TRM) show significantly upregulated IL22 expression during histological and clinical GI-GvHD (p = 0.048 and p = 0.022, respectively). In contrast, in GvHD patients suffering from TRM, IL22 was significantly lower (p = 0.007). Accordingly, lower IL22 was associated with a higher probability of TRM in survival analysis (p = 0.005). In a multivariable competing risk Cox regression analysis, low IL22 was identified as an independent risk factor for TRM (p = 0.007, hazard ratio 2.72, 95% CI 1.32 to 5.61). The expression of IL22 seemed to be microbiota dependent as broad-spectrum antibiotics significantly diminished IL22 expression (p = 0.019). Furthermore, IL22 expression significantly correlated with G-protein coupled receptor (GPR)43 (r = 0.263, p = 0.015) and GPR41 expression (r = 0.284, p = 0.009). In conclusion, our findings reveal an essential role of IL-22 for the prognosis of patients undergoing allogeneic SCT.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Microbiota , Enfermedad Injerto contra Huésped/metabolismo , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Intestinos , Trasplante Homólogo
9.
Immunity ; 55(4): 701-717.e7, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35364006

RESUMEN

Bacterial sensing by intestinal tumor cells contributes to tumor growth through cell-intrinsic activation of the calcineurin-NFAT axis, but the role of this pathway in other intestinal cells remains unclear. Here, we found that myeloid-specific deletion of calcineurin in mice activated protective CD8+ T cell responses and inhibited colorectal cancer (CRC) growth. Microbial sensing by myeloid cells promoted calcineurin- and NFAT-dependent interleukin 6 (IL-6) release, expression of the co-inhibitory molecules B7H3 and B7H4 by tumor cells, and inhibition of CD8+ T cell-dependent anti-tumor immunity. Accordingly, targeting members of this pathway activated protective CD8+ T cell responses and inhibited primary and metastatic CRC growth. B7H3 and B7H4 were expressed by the majority of human primary CRCs and metastases, which was associated with low numbers of tumor-infiltrating CD8+ T cells and poor survival. Therefore, a microbiota-, calcineurin-, and B7H3/B7H4-dependent pathway controls anti-tumor immunity, revealing additional targets for immune checkpoint inhibition in microsatellite-stable CRC.


Asunto(s)
Neoplasias Colorrectales , Microbiota , Animales , Antígenos B7 , Linfocitos T CD8-positivos , Calcineurina/metabolismo , Neoplasias Colorrectales/metabolismo , Ratones , Factores de Transcripción NFATC/metabolismo , Inhibidor 1 de la Activación de Células T con Dominio V-Set
10.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35105800

RESUMEN

Apoptosis is widely believed to be crucial for epithelial cell death and shedding in the intestine, thereby shaping the overall architecture of the gastrointestinal tract, but also regulating tolerance induction, pinpointing a role of apoptosis intestinal epithelial cell (IEC) turnover and maintenance of barrier function, and in maintaining immune homeostasis. To experimentally address this concept, we generated IEC-specific knockout mice that lack both executioner caspase-3 and caspase-7 (Casp3/7ΔIEC), which are the converging point of the extrinsic and intrinsic apoptotic pathway. Surprisingly, the overall architecture, cellular landscape, and proliferation rate remained unchanged in these mice. However, nonapoptotic cell extrusion was increased in Casp3/7ΔIEC mice, compensating apoptosis deficiency, maintaining the same physiological level of IEC shedding. Microbiome richness and composition stayed unaffected, bearing no sign of dysbiosis. Transcriptome and single-cell RNA sequencing analyses of IECs and immune cells revealed no differences in signaling pathways of differentiation and inflammation. These findings demonstrate that during homeostasis, apoptosis per se is dispensable for IEC turnover at the top of intestinal villi intestinal tissue dynamics, microbiome, and immune cell composition.


Asunto(s)
Apoptosis , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Células Epiteliales/enzimología , Homeostasis , Mucosa Intestinal/enzimología , Transducción de Señal , Animales , Caspasa 3/genética , Caspasa 7/genética , Ratones , Ratones Transgénicos
11.
Clin Infect Dis ; 74(4): 614-621, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34043764

RESUMEN

BACKGROUND: Butyrogenic bacteria play an important role in gut microbiome homeostasis and intestinal epithelial integrity. Previous studies have demonstrated an association between administration of short-chain fatty acids like butyrate and protection from acute graft-vs-host disease (GvHD) after allogeneic stem cell transplantation (ASCT). METHODS: In the current study, we examined the abundance and butyrogenic capacity of butyrate-producing bacteria in 28 healthy donors and 201 patients after ASCT. We prospectively collected serial stool samples and performed polymerase chain reaction analysis of the butyrate-producing bacterial enzyme butyryl-coenzyme A (CoA):acetate CoA-transferase (BCoAT) in fecal nucleic acid extracts. RESULTS: Our data demonstrate a strong and prolonged suppression of butyrogenic bacteria early in the course of ASCT. In a multivariable analysis, early use of broad-spectrum antibiotics before day 0 (day of transplantation) was identified as an independent factor associated with low BCoAT copy numbers (odds ratio, 0.370 [95% confidence interval, .175-.783]; P = .009). Diminished butyrogens correlated with other biomarkers of microbial diversity, such as low 3-indoxylsulfate levels, reduced abundance of Clostridiales and low inverse Simpson and effective Shannon indices (all P < .001). Low BCoAT copy numbers at GvHD-onset were correlated with GI-GvHD severity (P = .002) and associated with a significantly higher GvHD-associated mortality rate (P = .04). Furthermore, low BCoAT copy numbers at day 30 were associated with a significantly higher transplantation-related mortality rate (P = .02). CONCLUSIONS: Our results are consistent with the hypothesis that alterations in the microbiome play an important role in GvHD pathogenesis and that microbial parameters such as BCoAT might serve as biomarkers to identify patients at high risk of lethal GI-GvHD.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Bacterias , Butiratos , Enfermedad Injerto contra Huésped/microbiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Trasplante Homólogo/efectos adversos
12.
Sci Immunol ; 6(65): eabf7235, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34739338

RESUMEN

Deficiency in X-linked inhibitor of apoptosis protein (XIAP) is the cause for X-linked lymphoproliferative syndrome 2 (XLP2). About one-third of these patients suffer from severe and therapy-refractory inflammatory bowel disease (IBD), but the exact cause of this pathogenesis remains undefined. Here, we used XIAP-deficient mice to characterize the mechanisms underlying intestinal inflammation. In Xiap−/− mice, we observed spontaneous terminal ileitis and microbial dysbiosis characterized by a reduction of Clostridia species. We showed that in inflamed mice, both TNF receptor 1 and 2 (TNFR1/2) cooperated in promoting ileitis by targeting TLR5-expressing Paneth cells (PCs) or dendritic cells (DCs). Using intestinal organoids and in vivo modeling, we demonstrated that TLR5 signaling triggered TNF production, which induced PC dysfunction mediated by TNFR1. TNFR2 acted upon lamina propria immune cells. scRNA-seq identified a DC population expressing TLR5, in which Tnfr2 expression was also elevated. Thus, the combined activity of TLR5 and TNFR2 signaling may be responsible for DC loss in lamina propria of Xiap−/− mice. Consequently, both Tnfr1−/−Xiap−/− and Tnfr2−/−Xiap−/− mice were rescued from dysbiosis and intestinal inflammation. Furthermore, RNA-seq of ileal crypts revealed that in inflamed Xiap−/− mice, TLR5 signaling was abrogated, linking aberrant TNF responses with the development of a dysbiosis. Evidence for TNFR2 signaling driving intestinal inflammation was detected in XLP2 patient samples. Together, these data point toward a key role of XIAP in mediating resilience of TLR5-expressing PCs and intestinal DCs, allowing them to maintain tissue integrity and microbiota homeostasis.


Asunto(s)
Inflamación/inmunología , Intestinos/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Receptor Toll-Like 5/inmunología , Proteína Inhibidora de la Apoptosis Ligada a X/inmunología , Animales , Células Dendríticas/inmunología , Disbiosis/inmunología , Humanos , Inmunidad Innata/inmunología , Ratones , Ratones Noqueados , Células de Paneth/inmunología , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Receptores Tipo II del Factor de Necrosis Tumoral/deficiencia , Proteína Inhibidora de la Apoptosis Ligada a X/deficiencia
13.
Front Immunol ; 12: 753287, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777363

RESUMEN

Microbiota can exert immunomodulatory effects by short-chain fatty acids (SCFA) in experimental models of graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (allo-SCT). Therefore we aimed to analyze the expression of SCFAs sensing G-protein coupled receptor GPR109A and GPR43 by quantitative PCR in 338 gastrointestinal (GI) biopsies obtained from 199 adult patients undergoing allo-SCT and assessed the interaction of GPR with FOXP3 expression and regulatory T cell infiltrates. GPR expression was strongly upregulated in patients with stage II-IV GvHD (p=0.000 for GPR109A, p=0.01 for GPR43) and at the onset of GvHD (p 0.000 for GPR109A, p=0.006 for GPR43) and correlated strongly with FOXP3 and NLRP3 expression. The use of broad-spectrum antibiotics (Abx) drastically suppressed GPR expression as well as FOXP3 expression in patients' gut biopsies (p=0.000 for GPRs, FOXP3 mRNA and FOXP3+ cellular infiltrates). Logistic regression analysis revealed treatment with Abx as an independent factor associated with GPR and FOXP3 loss. The upregulation of GPRs was evident only in the absence of Abx (p=0.001 for GPR109A, p=0.014 for GPR43) at GvHD onset. Thus, GPR expression seems to be upregulated in the presence of commensal bacteria and associates with infiltration of FOXP3+ T regs, suggesting a protective, regenerative immunomodulatory response. However, Abx, which has been shown to induce dysbiosis, interferes with this protective response.


Asunto(s)
Antibacterianos/efectos adversos , Disbiosis/inducido químicamente , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedad Injerto contra Huésped/microbiología , Intestinos/metabolismo , Receptores de Superficie Celular/biosíntesis , Receptores Acoplados a Proteínas G/biosíntesis , Adulto , Aloinjertos , Antibacterianos/farmacología , Biopsia , Butiratos/farmacología , Línea Celular Tumoral , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Disbiosis/microbiología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Ácidos Grasos Volátiles/fisiología , Femenino , Factores de Transcripción Forkhead/biosíntesis , Factores de Transcripción Forkhead/genética , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/metabolismo , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Inmunomodulación , Intestinos/microbiología , Intestinos/patología , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/biosíntesis , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Receptores de Superficie Celular/genética , Receptores Acoplados a Proteínas G/genética , Índice de Severidad de la Enfermedad , Simbiosis , Linfocitos T Reguladores/inmunología , Regulación hacia Arriba
14.
Int J Infect Dis ; 103: 624-627, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33412272

RESUMEN

A 21-year-old woman was hospitalized due to coronavirus disease 2019 (COVID-19)-associated respiratory and hepatic impairment concomitant with severe hemolytic anemia. Upon diagnosis of secondary hemophagocytic lymphohistiocytosis, immunosuppression with anakinra and steroids was started, leading to a hepatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and viremia. Subsequent liver biopsy revealed virus particles in hepatocytes by electron microscopy and SARS-CoV-2 virus could be isolated and cultured. Immunosuppression was stopped and convalescent donor plasma given. In the differential diagnosis, an acute crisis of Wilson's disease was raised by laboratory and genetic testing. This case highlights the complexity of balancing immunosuppression to control hyperinflammation versus systemic SARS-CoV-2 dissemination.


Asunto(s)
COVID-19/complicaciones , Degeneración Hepatolenticular/diagnóstico , Hígado/virología , Linfohistiocitosis Hemofagocítica/etiología , SARS-CoV-2 , Diagnóstico Diferencial , Femenino , Humanos , Terapia de Inmunosupresión , Linfohistiocitosis Hemofagocítica/diagnóstico , Adulto Joven
15.
Clin Infect Dis ; 68(8): 1303-1310, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30124813

RESUMEN

BACKGROUND: Maintaining gastrointestinal (GI) microbiome diversity plays a key role during allogeneic stem cell transplantation (ASCT), and loss of diversity correlates with acute GI graft versus host disease (GvHD) and poor outcomes. METHODS: In this retrospective analysis of 161 ASCT patients, we used serial analyses of urinary 3-indoxyl sulfate (3-IS) levels and GI microbiome parameters within the first 10 days after ASCT to identify potential commensal microbiota-sparing antibiotics. Based on antibiotic activity, we formed 3 subgroups (Rifaximin without systemic antibiotics, Rifaximin with systemic antibiotics, and Ciprofloxacin/Metronidazole with/without systemic antibiotics). RESULTS: Mono-antibiosis with Rifaximin revealed higher 3-IS levels (P < .001), higher Clostridium cluster XIVa (CCXIVa) abundance (P = .004), and higher Shannon indices (P = .01) compared to Ciprofloxacin/Metronidazole with/without systemic antibiotics. Rifaximin followed by systemic antibiotics maintained microbiome diversity compared to Ciprofloxacin/Metronidazole with/without systemic antibiotics, as these patients showed still higher 3-IS levels (P = .04), higher CCXIVa copy numbers (P = .01), and higher Shannon indexes (P = .01). Even for this larger cohort of patients, the outcome was superior with regard to GI GvHD (P = .05) and lower transplant-related mortality (P < .001) for patients receiving Rifaximin plus systemic antibiotics compared to other types of systemic antibiotic treatment. Antibiosis with Ciprofloxacin/Metronidazole (n = 12, P = .01), Piperacillin/Tazobactam (n = 52, P = .01), Meropenem/Vancomycin (n = 16, P = .003), Ceftazidime (n = 10, P = .03), or multiple systemic antibiotics (n = 53, P = .001) showed significantly lower 3-IS levels compared to mono-antibiosis with Rifaximin (n = 14) or intravenous Vancomycin (n = 4, not statistically significant). CONCLUSIONS: Different types of antibiotic treatments show different impacts on markers of microbiome diversity. The identification of antibiotics sparing commensal bacteria remains an ongoing challenge. However, Rifaximin allowed a higher intestinal microbiome diversity, even in the presence of systemic broad-spectrum antibiotics.


Asunto(s)
Antibacterianos/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Trasplante de Células Madre Hematopoyéticas , Adulto , Enfermedad Injerto contra Huésped/microbiología , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , Trasplante Homólogo
16.
PLoS One ; 12(9): e0185265, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28934349

RESUMEN

Intestinal microbiota disruption is associated with acute gastrointestinal (GI) Graft-versus-Host Disease (GvHD) and poor outcome after allogeneic stem cell transplantation (ASCT). Here, in a retrospective analysis of 200 patients undergoing ASCT at the Regensburg University Medical Center, we assessed the relative expression of Paneth cell antimicrobial peptides (AMPs), Human Defensins (HD) 5 and 6 and regenerating islet-derived 3α (Reg3α), in 292 human intestinal biopsies as well as Reg3α serum levels in relation to acute GI GvHD. In the absence of GI GvHD, the relative expression of Paneth cell AMPs was significantly higher in the small intestine (duodenum to ileum) than in the stomach and large intestine (cecum to rectum) for Reg3α (p≤0.001), HD5 (p≤0.002) and HD6 (p≤0.02). Acute stage 2-4 GI GvHD was associated with reduced expression of AMPs in the small intestine (p≤0.01) in comparison to stage 0-1 disease, accompanied by a decrease in Paneth cell count in case of severe acute GI GvHD (p<0.001). The opposite held true for the large intestine as we found stage 2-4 GI GvHD correlated with significantly higher expression of HD5, HD6, and Reg3α compared to mild or no acute GI GvHD (p≤0.002). Severe GI GvHD in both the lower and the upper GI tract also correlated with higher serum concentrations of Reg3α (p = 0.002). As indirect markers of intestinal microbiome diversity low levels of urinary 3-indoxyl sulfate levels were associated with severe stages of acute GI GvHD compared to mild stage or no acute GI GvHD (p = 0.05). In conclusion, acute GI GvHD correlates with intestinal expression of HD5, HD6 and Reg3α as well as Reg3α serum levels and is associated with intestinal dysbiosis.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Tracto Gastrointestinal/metabolismo , Regulación de la Expresión Génica , Enfermedad Injerto contra Huésped/metabolismo , Enfermedad Injerto contra Huésped/terapia , Trasplante de Células Madre , Enfermedad Aguda , Adulto , Biodiversidad , Enfermedad Injerto contra Huésped/microbiología , Enfermedad Injerto contra Huésped/cirugía , Humanos , Microbiota , Estudios Retrospectivos , Trasplante Homólogo
17.
Biol Blood Marrow Transplant ; 23(5): 845-852, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28232086

RESUMEN

In allogeneic stem cell transplantation (ASCT), systemic broad-spectrum antibiotics are frequently used for treatment of infectious complications, but their effect on microbiota composition is still poorly understood. This retrospective analysis of 621 patients who underwent ASCT at the University Medical Center of Regensburg and Memorial Sloan Kettering Cancer Center in New York assessed the impact of timing of peritransplant antibiotic treatment on intestinal microbiota composition as well as transplant-related mortality (TRM) and overall survival. Early exposure to antibiotics was associated with lower urinary 3-indoxyl sulfate levels (P < .001) and a decrease in fecal abundance of commensal Clostridiales (P = .03) compared with late antibiotic treatment, which was particularly significant (P = .005) for Clostridium cluster XIVa in the Regensburg group. Earlier antibiotic treatment before ASCT was further associated with a higher TRM (34%, 79/236) compared with post-ASCT (21%, 62/297, P = .001) or no antibiotics (7%, 6/88, P < .001). Timing of antibiotic treatment was the dominant independent risk factor for TRM (HR, 2.0; P ≤ .001) in multivariate analysis besides increase age (HR, 2.15; P = .004), reduced Karnofsky performance status (HR, 1.47; P = .03), and female donor-male recipient sex combination (HR, 1.56; P = .02) A competing risk analysis revealed the independent effect of early initiation of antibiotics on graft-versus-host disease-related TRM (P = .004) in contrast to infection-related TRM and relapse (not significant). The poor outcome associated with early administration of antibiotic therapy that is active against commensal organisms, and specifically the possibly protective Clostridiales, calls for the use of Clostridiales-sparing antibiotics and rapid restoration of microbiota diversity after cessation of antibiotic treatment.


Asunto(s)
Antibacterianos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Trasplante de Células Madre/métodos , Adulto , Antibacterianos/efectos adversos , Clostridium/efectos de los fármacos , Femenino , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/mortalidad , Humanos , Infecciones/etiología , Infecciones/mortalidad , Masculino , Estudios Retrospectivos , Factores de Riesgo , Trasplante de Células Madre/efectos adversos , Trasplante de Células Madre/mortalidad , Análisis de Supervivencia , Tiempo de Tratamiento , Trasplante Homólogo , Resultado del Tratamiento , Adulto Joven
19.
Curr Opin Urol ; 27(2): 93-98, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27898455

RESUMEN

PURPOSE OF REVIEW: The purpose of this review is to outline and evaluate the most recent literature on the role of the microbiome in urinary tract diseases. RECENT FINDINGS: High throughput molecular DNA sequencing of bacterial 16S rRNA genes enabled the analysis of complex microbial communities inhabiting the human urinary tract. Several recent studies have identified bacterial taxa of the urinary microbiome to impact urinary tract diseases including interstitial cystitis, urgency urinary incontinence or calcium oxalate stone formation. Furthermore, treatment of urinary tract infections by antibiotics globally impacts community profiles of the intestinal microbiota and might indirectly influence human health. Alternative treatment options like application of probiotics for the treatment of urinary tract infections are currently under investigation. SUMMARY: The urinary microbiome and its relationship to urinary tract diseases is currently under comprehensive investigation. Further studies are needed to shed light on the role of commensal microbiota for urinary tract infections.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Microbiota/genética , ARN Ribosómico 16S/genética , Enfermedades Urológicas , Humanos , Incontinencia Urinaria , Enfermedades Urológicas/genética , Enfermedades Urológicas/microbiología
20.
Microbiome ; 4(1): 28, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27329048

RESUMEN

BACKGROUND: Next-generation 16S ribosomal RNA gene sequencing is widely used to determine the relative composition of the mammalian gut microbiomes. However, in the absence of a reference, this does not reveal alterations in absolute abundance of specific operational taxonomic units if microbial loads vary across specimens. RESULTS: Here we suggest the spiking of exogenous bacteria into crude specimens to quantify ratios of absolute bacterial abundances. We use the 16S rDNA read counts of the spike-in bacteria to adjust the read counts of endogenous bacteria for changes in total microbial loads. Using a series of dilutions of pooled faecal samples from mice containing defined amounts of the spike-in bacteria Salinibacter ruber, Rhizobium radiobacter and Alicyclobacillus acidiphilus, we demonstrate that spike-in-based calibration to microbial loads allows accurate estimation of ratios of absolute endogenous bacteria abundances. Applied to stool specimens of patients undergoing allogeneic stem cell transplantation, we were able to determine changes in both relative and absolute abundances of various phyla, especially the genus Enterococcus, in response to antibiotic treatment and radio-chemotherapeutic conditioning. CONCLUSION: Exogenous spike-in bacteria in gut microbiome studies enable estimation of ratios of absolute OTU abundances, providing novel insights into the structure and the dynamics of intestinal microbiomes.


Asunto(s)
Bacterias/clasificación , Heces/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos , Animales , Bacterias/genética , Técnicas Bacteriológicas/métodos , ADN Ribosómico/genética , Humanos , Ratones , Microbiota
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA