Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Phytopathology ; 114(5): 971-981, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38376984

RESUMEN

Nodule-specific cysteine-rich (NCR) peptides, encoded in the genome of the Mediterranean legume Medicago truncatula (barrelclover), are known to regulate plant-microbe interactions. A subset of computationally derived 20-mer peptide fragments from 182 NCR peptides was synthesized to identify those with activity against the unculturable vascular pathogen associated with citrus greening disease, 'Candidatus Liberibacter asiaticus' (CLas). Grounded in a design of experiments framework, we evaluated the peptides in a screening pipeline involving three distinct assays: a bacterial culture assay with Liberibacter crescens, a CLas-infected excised citrus leaf assay, and an assay to evaluate effects on bacterial acquisition by the nymphal stage of hemipteran vector Diaphorina citri. A subset of the 20-mer NCR peptide fragments inhibits both CLas growth in citrus leaves and CLas acquisition by D. citri. Two peptides induced higher levels of D. citri mortality. These findings reveal 20-mer NCR peptides as a new class of plant-derived biopesticide molecules to control citrus greening disease.


Asunto(s)
Citrus , Medicago truncatula , Péptidos , Enfermedades de las Plantas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Citrus/microbiología , Péptidos/química , Péptidos/metabolismo , Medicago truncatula/microbiología , Cisteína , Hemípteros/microbiología , Agentes de Control Biológico , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Liberibacter/genética , Animales , Rhizobiaceae/genética
2.
J Proteome Res ; 20(5): 2851-2866, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33890474

RESUMEN

Diaphorina citri is a vector of "Candidatus Liberibacter asiaticus" (CLas), associated with citrus greening disease. D. citri exhibit at least two color morphotypes, blue and non-blue, the latter including gray and yellow morphs. Blue morphs have a greater capacity for long-distance flight and transmit CLas less efficiently as compared to non-blue morphs. Differences in physiology and immunity between color morphs of the insect vector may influence disease epidemiology and biological control strategies. We evaluated the effect of CLas infection on color morph and sex-specific proteomic profiles of D. citri. Immunity-associated proteins were more abundant in blue morphs as compared to non-blue morphs but were upregulated at a higher magnitude in response to CLas infection in non-blue insects. To test for differences in color morph immunity, we measured two phenotypes: (1) survival of D. citri when challenged with the entomopathogenic fungus Beauveria bassiana and (2) microbial load of the surface and internal microbial communities. Non-blue color morphs showed higher mortality at four doses of B. bassinana, but no differences in microbial load were observed. Thus, color morph polyphenism is associated with two distinct proteomic immunity phenotypes in D. citri that may impact transmission of CLas and resistance to B. bassiana under some conditions.


Asunto(s)
Citrus , Hemípteros , Rhizobiaceae , Animales , Femenino , Insectos Vectores , Masculino , Enfermedades de las Plantas , Proteómica , Rhizobiaceae/genética
3.
mBio ; 10(1)2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30782658

RESUMEN

Selective forces that maintain the polymorphism for aflatoxigenic and nonaflatoxigenic individuals of Aspergillus flavus are largely unknown. As soils are widely considered the natural habitat of A. flavus, we hypothesized that aflatoxin production would confer a fitness advantage in the soil environment. To test this hypothesis, we used A. flavus DNA quantified by quantitative PCR (qPCR) as a proxy for fitness of aflatoxigenic and nonaflatoxigenic field isolates grown in soil microcosms. Contrary to predictions, aflatoxigenic isolates had significantly lower fitness than did nonaflatoxigenic isolates in natural soils across three temperatures (25, 37, and 42°C). The addition of aflatoxin to soils (500 ng/g) had no effect on the growth of A. flavus Amplicon sequencing showed that neither the aflatoxin-producing ability of the fungus nor the addition of aflatoxin had a significant effect on the composition of fungal or bacterial communities in soil. We argue that the fitness disadvantage of aflatoxigenic isolates is most likely explained by the metabolic cost of producing aflatoxin. Coupled with a previous report of a selective advantage of aflatoxin production in the presence of some insects, our findings give an ecological explanation for balancing selection resulting in persistent polymorphisms in aflatoxin production.IMPORTANCE Aflatoxin, produced by the fungus Aspergillus flavus, is an extremely potent hepatotoxin that causes acute toxicosis and cancer, and it incurs hundreds of millions of dollars annually in agricultural losses. Despite the importance of this toxin to humans, it has remained unclear what the fungus gains by producing aflatoxin. In fact, not all strains of A. flavus produce aflatoxin. Previous work has shown an advantage to producing aflatoxin in the presence of some insects. Our current work demonstrates the first evidence of a disadvantage to A. flavus in producing aflatoxin when competing with soil microbes. Together, these opposing evolutionary forces could explain the persistence of both aflatoxigenic and nonaflatoxigenic strains through evolutionary time.


Asunto(s)
Aflatoxinas/metabolismo , Antibiosis , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/metabolismo , Metabolismo Energético , Venenos/metabolismo , Microbiología del Suelo , Bacterias/crecimiento & desarrollo , ADN de Hongos/análisis , ADN de Hongos/genética , Aptitud Genética , Genética de Población , Reacción en Cadena en Tiempo Real de la Polimerasa , Temperatura
4.
ISME J ; 11(12): 2767-2780, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28809851

RESUMEN

Organohalide-respiring bacteria have key roles in the natural chlorine cycle; however, most of the current knowledge is based on cultures from contaminated environments. We demonstrate that grape pomace compost without prior exposure to chlorinated solvents harbors a Dehalogenimonas (Dhgm) species capable of using chlorinated ethenes, including the human carcinogen and common groundwater pollutant vinyl chloride (VC) as electron acceptors. Grape pomace microcosms and derived solid-free enrichment cultures were able to dechlorinate trichloroethene (TCE) to less chlorinated daughter products including ethene. 16S rRNA gene amplicon and qPCR analyses revealed a predominance of Dhgm sequences, but Dehalococcoides mccartyi (Dhc) biomarker genes were not detected. The enumeration of Dhgm 16S rRNA genes demonstrated VC-dependent growth, and 6.55±0.64 × 108 cells were measured per µmole of chloride released. Metagenome sequencing enabled the assembly of a Dhgm draft genome, and 52 putative reductive dehalogenase (RDase) genes were identified. Proteomic workflows identified a putative VC RDase with 49 and 56.1% amino acid similarity to the known VC RDases VcrA and BvcA, respectively. A survey of 1,173 groundwater samples collected from 111 chlorinated solvent-contaminated sites in the United States and Australia revealed that Dhgm 16S rRNA genes were frequently detected and outnumbered Dhc in 65% of the samples. Dhgm are likely greater contributors to reductive dechlorination of chlorinated solvents in contaminated aquifers than is currently recognized, and non-polluted environments represent sources of organohalide-respiring bacteria with novel RDase genes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chloroflexi/enzimología , Hidrolasas/metabolismo , Vitis/química , Australia , Proteínas Bacterianas/genética , Biodegradación Ambiental , Chloroflexi/genética , Chloroflexi/aislamiento & purificación , Chloroflexi/metabolismo , Compostaje , Etilenos/metabolismo , Agua Subterránea/microbiología , Halogenación , Hidrolasas/genética , Proteómica , Tricloroetileno/metabolismo , Cloruro de Vinilo/metabolismo , Vitis/microbiología , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA