Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Intervalo de año de publicación
1.
RSC Adv ; 14(18): 12438-12448, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38633484

RESUMEN

Acetone is a well-known volatile organic compound that is widely used in different industrial and domestic areas, but it can cause dangerous effects on human health. Thus, the fabrication of highly sensitive and selective sensors for recognition of acetone is incredibly important. Here, we prepared the SnO2/Pd-NiO (SPN) nanowires-based gas sensor for the detection of acetone, in which, the amount of Pd nanoparticles were varied to enhance the performance of the devices. We demonstrated that the acetone gas sensing performance of the SPN device was significantly enhanced, showing increases of 3.72 and 6.53 folds compared to pristine SnO2 and NiO sensors, respectively. The Pd-NiO 0.01% wt Pd SPN sensor (SPN-1) exhibited an excellent response (Ra/Rg = 14.88) toward 500 ppm acetone gas. The SPN-1 sensor also showed a fast gas response time of 11/150 seconds with 500 ppm Acetone at 450 °C, while the recovery time was 468/526 seconds. Additionally, the sensor showed good selectivity toward acetone over other reducing gases, such as NH3, CH4, and VOCs. With those results, the SPN-1 sensor shows superiority compared to sensors based on pure materials.

2.
Sensors (Basel) ; 23(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37836939

RESUMEN

The real-time monitoring of food freshness in refrigerators is of significant importance in detecting potential food spoiling and preventing serious health issues. One method that is commonly reported and has received substantial attention is the discrimination of food freshness via the tracking of volatile molecules. Nevertheless, the ambient environment of low temperature (normally below 4 °C) and high humidity (90% R.H.), as well as poor selectivity in sensing gas species remain the challenge. In this research, an integrated smart gas-tracking device is designed and fabricated. By applying pump voltage on the yttria-stabilized zirconia (YSZ) membrane, the oxygen concentration in the testing chamber can be manually tailored. Due to the working principle of the sensor following the mixed potential behavior, distinct differences in sensitivity and selectivity are observed for the sensor that operated at different oxygen concentrations. Typically, the sensor gives satisfactory selectivity to H2S, NH3, and C2H5OH at the oxygen concentrations of 10%, 30%, and 40%, respectively. In addition, an acceptable response/recovery rate (within 24 s) is also confirmed. Finally, a refrigerator prototype that includes the smart gas sensor is built, and satisfactory performance in discriminating food freshness status of fresh or semi-fresh is verified for the proposed refrigerator prototype. In conclusion, these aforementioned promising results suggest that the proposed integrated smart gas sensor could be a potential candidate for alarming food spoilage.


Asunto(s)
Frío , Alimentos , Humedad , Oxígeno
3.
RSC Adv ; 13(19): 13017-13029, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37124013

RESUMEN

As a source of clean energy, hydrogen (H2) is a promising alternative to fossil fuels in reducing the carbon footprint. However, due to the highly explosive nature of H2, developing a high-performance sensor for real-time detection of H2 gas at low concentration is essential. Here, we demonstrated the H2 gas sensing performance of Ag/Pd nanoparticle-functionalized ZnO nanoplates. Bimetallic Ag/Pd nanoparticles with an average size of 8 nm were prepared and decorated on the surface of ZnO nanoplates to enhance the H2 gas sensing performance. Compared with pristine ZnO, the sensor based on ZnO nanoplate doped with Ag/Pd (0.025 wt%) exhibited an outstanding response upon exposure to H2 gas (R a/R g = 78 for 500 ppm) with fast response time and speedy recovery. The sensor also showed excellent selectivity for the detection of H2 over the interfering gases (i.e., CO, NH3, H2S, and VOCs). The superior gas sensing of the sensor was dominated by the morphological structure of ZnO, and the synergistic effect of strong adsorption and the optimum catalytic characteristics of the bimetallic Ag/Pd enhances the hydrogen response of the sensors. Thus, bimetallic Ag/Pd-doped ZnO is a promising sensing material for the quantitative determination of H2 concentration towards industrial applications.

4.
J Hazard Mater ; 451: 131184, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36933506

RESUMEN

The adverse effects of NO2 on the environment and human health promote the development of high-performance gas sensors to address the need for monitoring. Two-dimensional (2D) metal chalcogenides have been considered an emerging group of NO2-sensitive materials, while incomplete recovery and low long-term stability are the two major hurdles for their practical implementation. The transformation into oxychalcogenides is an effective strategy to alleviate these drawbacks, but usually requires multiple-step synthesis and lacks controllability. Here, we prepare tailorable 2D p-type gallium oxyselenide with the thicknesses of 3-4 nm, through a single-step mechanochemical synthesis that combines the in-situ exfoliation and oxidation of bulk crystals. The optoelectronic NO2 sensing performances of such 2D gallium oxyselenide with different oxygen contents are investigated at room temperature, in which 2D GaSe0.58O0.42 exhibits the largest response magnitude of 82.2% towards 10 ppm NO2 at the irradiation of UV, with full reversibility, excellent selectivity, and long term stability for at least one month. Such overall performances are significantly improved over those of reported oxygen-incorporated metal chalcogenide-based NO2 sensors. This work provides a feasible approach to prepare 2D metal oxychalcogenides in a single-step manner and demonstrates their great potential for room-temperature fully reversible gas sensing.

5.
ACS Sens ; 7(5): 1581-1592, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35536008

RESUMEN

Gas sensor-embedded smartphones would offer the opportunity of on-site tracking of gas molecules for various applications, for example, harmful air pollutant alarms or noninvasive assessment of health status. Nevertheless, high power consumption and difficulty in replacing malfunctioned sensors as well as limited space in the smartphone to host the sensor restrain the relevant advancements. In this article, we create a smartphone case-based sensing platform by integrating the functional units into a smartphone case, which performs a low detection limit of 117 ppb to acetone and high specificity. Particularly, dimming glass-regulated light fidelity (Li-Fi) communication is successfully developed, allowing the sensing platform to operate with relatively low power consumption (around 217 mW). Experimental proof on harmful gas sensing and potential clinic application is implemented with the sensing platform, demonstrating satisfactory sensing performance and acceptable health risk pre-warning accuracy (87%). Thus, the developed smartphone case-based sensing platform would be a good candidate for realizing harmful gas alarms and noninvasive assessment of health status.


Asunto(s)
Acetona , Teléfono Inteligente
6.
Nanomaterials (Basel) ; 13(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36616056

RESUMEN

Gas sensors play an important role in many areas of human life, including the monitoring of production processes, occupational safety, food quality assessment, and air pollution monitoring. Therefore, the need for gas sensors to monitor hazardous gases, such as ammonia, at low operating temperatures has become increasingly important in many fields. Sensitivity, selectivity, low cost, and ease of production are crucial characteristics for creating a capillary network of sensors for the protection of the environment and human health. However, developing gas sensors that are not only efficient but also small and inexpensive and therefore integrable into everyday life is a difficult challenge. In this paper, we report on a resistive sensor for ammonia detection based on thin V2O5 nanosheets operating at room temperature. The small thickness and porosity of the V2O5 nanosheets give the sensors good performance for sensing ammonia at room temperature (RT), with a relative change of resistance of 9.4% to 5 ppm ammonia (NH3) and an estimated detection limit of 0.4 ppm. The sensor is selective with respect to the seven interferents tested; it is repeatable and stable over the long term (four months). Although V2O5 is generally an n-type semiconductor, in this case the nanosheets show a p-type semiconductor behavior, and thus a possible sensing mechanism is proposed. The device's performance, along with its size, low cost, and low power consumption, makes it a good candidate for monitoring freshness and spoilage along the food supply chain.

7.
J Hazard Mater ; 412: 125181, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33951858

RESUMEN

The selective detection and classification of NH3 and H2S gases with H2S gas interference based on conventional SnO2 thin film sensors is still the main problem. In this work, three layers of SnO2/Pt/WO3 nanofilms with different WO3 thicknesses (50, 80, 140, and 260 nm) were fabricated using the sputtering technique. The WO3 top layer were used as a gas filter to further improve the selectivity of sensors. The effect of WO3 thickness on the (NH3, H2, and H2S) gas-sensing properties of the sensors was investigated. At the optimal WO3 thickness of 140 nm, the gas responses of SnO2/Pt/WO3 sensors toward NH3 and H2 gases were slightly lower than those of Pt/SnO2 sensor film, and the gas response of SnO2/Pt/WO3 sensor films to H2S gas was almost negligible. The calcification of NH3 and H2 gases was effectively conducted by machine learning algorithms. These evidences manifested that SnO2/Pt/WO3 sensor films are suitable for the actual NH3 detection of NH3 and H2S gases.

8.
Anal Chim Acta ; 1167: 338576, 2021 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-34049621

RESUMEN

The effect of MoS2 nanosheet (NS) decoration on the gas-sensing properties of SnO2 nanofibers (NFs) was investigated. The decorated sensors were fabricated by facile on-chip electrospinning technique and subsequently dropping MoS2 NSs-dispersed solution. The MoS2 NS decoration resulted in enhanced the response and reduced the operating temperature of SnO2 NFs towards SO2 gas. The SnO2 NF sensor decorated with the optimum density of MoS2 NSs exhibited about 10-fold enhancement in gas response to 10 ppm SO2 at 150 °C as compared with the bare SnO2 NF sensor. Furthermore, the decorated sensors exhibited an extremely low detection limit and good selectivity for SO2 gas against other interfering gases, such as CO, NH3, and H2. The enhanced SO2 gas-sensing performance of MoS2 NSs-decorated SnO2 NFs was attributed to the chemical sensitization of MoS2 NSs and charge transfer through heterojunctions between the NSs and SnO2 nanograins. The classification of toxic gases such as CO, H2, and NH3 by the MoS2 NSs-decorated SnO2 NF sensors can achieve high accuracy with linear discriminant analysis (LDA). Our results suggest that the one-dimensional nanostructures of semiconductor metal oxides decorated with two-dimensional transition metal dichalcogenides are attractive candidates for the detection of hazardous gases.

9.
J Phys Condens Matter ; 33(30)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-33794513

RESUMEN

Gas sensor technology is widely utilized in various areas ranging from home security, environment and air pollution, to industrial production. It also hold great promise in non-invasive exhaled breath detection and an essential device in future internet of things. The past decade has witnessed giant advance in both fundamental research and industrial development of gas sensors, yet current efforts are being explored to achieve better selectivity, higher sensitivity and lower power consumption. The sensing layer in gas sensors have attracted dominant attention in the past research. In addition to the conventional metal oxide semiconductors, emerging nanocomposites and graphene-like two-dimensional materials also have drawn considerable research interest. This inspires us to organize this comprehensive 2020 gas sensing materials roadmap to discuss the current status, state-of-the-art progress, and present and future challenges in various materials that is potentially useful for gas sensors.

10.
J Nanosci Nanotechnol ; 21(4): 2626-2632, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33500085

RESUMEN

In the current work, we report the on-chip fabrication of a low-temperature H2S sensor based on p-type Co3O4 nanofibers (NFs) using the electrospinning method. The FESEM images show the typical spider-net like morphologies of synthesized Co3O4 NFs with an average diameter of 90 nm formed on the comb-like electrodes. The EDX data indicate the presence of Co and O elements in the NFs. The XRD analysis results confirm the formation of single-phase cubic spinel nanocrystalline structures (Fd3 m) for the synthesized Co3O4 NFs. The Raman results are in agreement with the XRD data through the presence of five typical vibration modes of the nanocrystalline Co3O4. The gas sensing properties of the fabricated Co3O4 NF sensors are tested to 1 ppm H2S within a temperature range of 150 °C to 450 °C. The results indicate a highest sensor response to 1 ppm H2S with the gas response of aproximately 2.1 times and the gas response/recovery times of 75 s/258 s at a low temperature of 250 °C. The fabricated sensor also demonstrates good selectivity and a low detection limit of 18 ppb. The overall results suggest a simple and effective fabrication process for the p-type Co3O4 NF sensor for practical applications in detecting H2S gas at low temperature.

11.
RSC Adv ; 11(53): 33613-33625, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-35497546

RESUMEN

Chemoresistive gas sensors play an important role in detecting toxic gases for air pollution monitoring. However, the demand for suitable nanostructures that could process high sensing performance remains high. In this study, hollow ZnO nanorices were synthesized by a simple hydrothermal method to detect NO2 and SO2 toxic gases efficiently. Material characterization by some advanced techniques, such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectroscopy, demonstrated that the hollow ZnO nanorices had a length and diameter size of less than 500 and 160 nm, respectively. In addition, they had a thin shell thickness of less than 30 nm, formed by an assembly of tiny nanoparticles. The sensor based on the hollow ZnO nanorices could detect low concentration of NO2 and SO2 gasses at sub-ppm level. At an optimum operating temperature of 200 °C, the sensor had response values of approximately 15.3 and 4.8 for 1 ppm NO2 and 1 ppm SO2, respectively. The sensor also exhibited good stability and selectivity, suggesting that the sensor can be applied to NO2 and SO2 toxic gas detection in ambient air.

12.
Anal Chim Acta ; 1124: 85-93, 2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-32534679

RESUMEN

In this work, four identical micro sensors on the same chip with noble metal decorated tin oxide nanowires as gas sensing material were located at different distances from an integrated heater to work at different temperatures. Their responses are combined in highly informative 4D points that can qualitatively (gas recognition) and quantitatively (concentration estimate) discriminate all the tested gases. Two identical chips were fabricated with tin oxide (SnO2) nanowires decorated with different metal nanoparticles: one decorated with Ag nanoparticles and one with Pt nanoparticles. Support Vector Machine was used as the "brain" of the sensing system. The results show that the systems using these multisensor chips were capable of achieving perfect classification (100%) and good estimation of the concentration of tested gases (errors in the range 8-28%). The Ag decorated sensors did not have a preferential gas, while Pt decorated sensors showed a lower error towards acetone, hydrogen and ammonia. Combination of the two sensor chips improved the overall estimation of gas concentrations, but the individual sensor chips were better for some specific target gases.

13.
RSC Adv ; 10(30): 17713-17723, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35515635

RESUMEN

SnO2 nanowires (NWs) are used in gas sensors, but their response to highly toxic gas H2S is low. Thus, their performance toward the effective detection of low-level H2S in air should be improved for environmental-pollution control and monitoring. Herein, Ag2O nanoparticle decorated SnO2 NWs were prepared by a simple on-chip growth and subsequent dip-coating method. The amount of decorated Ag2O nanoparticles on the surface of SnO2 NWs was modified by changing the concentration of AgNO3 solution and/or dipping times. Gas-sensing measurements were conducted at various working temperatures (200-400 °C) toward different H2S concentrations ranging within 0.1-1 ppm. The selectivity of Ag2O-decorated SnO2 NW sensors for ammonia and hydrogen gases was tested. Results confirmed that the Ag2O-decorated SnO2 NW sensors had excellent response, selectivity, and reproducibility. The gas-sensing mechanism was interpreted under the light of energy-band bending by sulfurization, which converted the p-n junction into n-n, thereby significantly enhancing the sensing performance.

14.
RSC Adv ; 8(35): 19449-19455, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35540984

RESUMEN

Metal oxide nanostructures have been extensively used in electrochemical devices due to their advantages, including high active surface area and chemical stability. However, the electrochemical properties of metal oxides are strongly dependent on their structural characteristics. We performed a comparative study on the electrochemical performance of nanoporous nickel oxide (NiO) nanosheets and nanowires. The advanced nanoporous NiO nanomaterials were synthesized by a facile hydrothermal method followed by thermal calcination. The synthesized nanomaterials, as characterized by scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, X-ray diffraction, and nitrogen adsorption/desorption isotherms, demonstrated the nanoporosity and high crystallinity of the NiO nanosheets and nanowires. Cyclic voltammetry measurement was performed using a three-electrode system to evaluate the electrochemical properties of the synthesized materials. Results showed that the nanoporous NiO nanosheets possessed a higher current density than that of the nanowires by approximately ten times. Moreover, the nanoporous NiO nanosheets showed exceptionally high stability of almost 100%, after three cycles in strong alkaline environments, thereby suggesting possible application in electrochemical devices.

15.
RSC Adv ; 8(63): 36323-36330, 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-35558448

RESUMEN

The long duration of a working device with a limited battery capacity requires gas sensors with low power consumption. A self-heated gas sensor is a highly promising candidate to satisfy this requirement. In this study, two gas sensors with sparse and dense SnO2 nanowire (NW) networks were investigated under the Joule heating effect at the nanojunction. Results showed that the local heating nanojunction was effective for NO2 sensing but generally not for reduction gases. At 1 µW, the sparse NW sensor showed a good sensing performance to the NO2 gas. The dense SnO2 NW network required a high-power supply for gas-sensitive activation, but was suitable for reduction gases. A power of approximately 500 µW was also needed for a fast recovery time. Notably, the dense NW sensor can response to ethanol and H2S gases. Results also showed that the self-heated sensors were simple in design and reproducible in terms of the fabrication process.

16.
ACS Appl Mater Interfaces ; 6(15): 12022-30, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-24984225

RESUMEN

The on-chip growth and surface-functionalization have been recently regarded as promising techniques for large-scale fabrication of high performance nanowires gas sensors. Here we demonstrate a good NO2 gas-sensing performance of the tungsten oxide nanowires (TONWs) sensors realized by scalable on-chip fabrication and RuO2-functionalization. The gas response (Rg/Ra) of the RuO2-functionalized TONWs to 5 ppm of NO2 was 186.1 at 250 °C, which increased up to ∼18.6-fold compared with that of the bare TONWs. On the contrary, the responses of the bare and functionalized sensors to 10 ppm of NH3, 10 ppm of H2S and 10 ppm of CO gases were very low of about 1.5, indicating the good selectivity. In addition, the TONW sensors fabricated by the on-chip growth technique exhibited a good reversibility up to 7 cycles switching from air-to-gas with a response of 19.8 ± 0.033 (to 1 ppm of NO2), and this value was almost the same (about 19.5 ± 0.027) for 11 cycles after three months storage in laboratory condition. The response and selectivity enhancement of RuO2-functionalzied TONWs sensors was attributed to the variation of electron depletion layer due to the formation of RuO2/TONWs Schottky junctions and/or the promotion of more adsorption sites for NO2 gas molecule on the surface of TONWs, whereas the good reversibility was attributed to the formation of the stable monoclinic WO3 from the single crystal of monoclinic W18O49 after annealing at 600 °C.

17.
J Hazard Mater ; 265: 124-32, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24355775

RESUMEN

Decoration of noble metal nanoparticles (NPs) on the surface of semiconducting metal oxide nanowires (NWs) to enhance material characteristics, functionalization, and sensing abilities has attracted increasing interests from researchers worldwide. In this study, we introduce an effective method for the decoration of Pd NPs on the surface of SnO2 NWs to enhance CO gas-sensing performance. Single-crystal SnO2 NWs were fabricated by chemical vapor deposition, whereas Pd NPs were decorated on the surface of SnO2 NWs by in situ reduction of the Pd complex at room temperature without using any linker or reduction agent excepting the copolymer P123. The materials were characterized by advanced techniques, such as high-resolution transmission electron microscopy, scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The Pd NPs were effectively decorated on the surface of SnO2 NWs. As an example, the CO sensing characteristics of SnO2 NWs decorated with Pd NPs were investigated at different temperatures. Results revealed that the gas sensor exhibited excellent sensing performance to CO at low concentration (1-25ppm) with ultrafast response-recovery time (in seconds), high responsivity, good stability, and reproducibility.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monóxido de Carbono/análisis , Nanopartículas del Metal/química , Nanocables/química , Paladio/química , Compuestos de Estaño/química
18.
Nanotechnology ; 22(48): 485503, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-22071572

RESUMEN

Achieving proper designs of nanosensors for highly sensitive and selective detection of toxic environmental gases is one of the crucial issues in the field of gas sensor technology, because such designs can lead to the enhancement of gas sensor performance and expansion of their applications. Different geometrical designs of porous tungsten oxide nanostructures, including the mesocages, hollow spheres and nanowires, are synthesized for toxic gas sensor applications. Nanosensor designs with small crystalline size, large specific surface area, and superior physical characteristics enable the highly sensitive and selective detection of low concentration (ppm levels), highly toxic NO(2) among CO, as well as volatile organic compound gases, such as acetone, benzene, and ethanol. The experimental results showed that the sensor response was not only dependent on the specific surface area, but also on the geometries and crystal size of materials. Among the designed nanosensors, the nanowires showed the highest sensitivity, followed by the mesocages and hollow spheres-despite the fact that mesocages had the largest specific surface area of 80.9 m(2) g( - 1), followed by nanowires (69.4 m(2) g( - 1)), and hollow spheres (6.5 m(2) g( - 1)). The nanowire sensors had a moderate specific surface area (69.4 m(2) g( - 1)) but they exhibited the highest sensitivity because of their small diameter (∼5 nm), which approximates the Debye length of WO(3). This led to the depletion of the entire volume of the nanowires upon exposure to NO(2), resulting in an enormous increase in sensor resistance.


Asunto(s)
Gases/análisis , Nanocables/ultraestructura , Óxidos/química , Tungsteno/química , Monitoreo del Ambiente/métodos , Microscopía Electrónica , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanocables/química , Dióxido de Nitrógeno/análisis , Tamaño de la Partícula , Porosidad , Temperatura
19.
J Nanosci Nanotechnol ; 11(2): 1601-4, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21456246

RESUMEN

The electrical and gas sensing properties of mat-type thin films fabricated by the packing of single-walled carbon nanotubes are investigated. The responses of the sensors with various thicknesses or resistances are measured, and the behavior is explained by a diffusion model. The successful explanation of the sensor response using the diffusion model suggests that the mat-type structure of compacted carbon nanotubes can be treated as a porous medium for gas sensor applications.

20.
J Nanosci Nanotechnol ; 8(10): 5586-9, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19198504

RESUMEN

We develop a simple method to synthesize nano tube or wire structure of tin-oxide for gas sensor application. It is realized by the rheotaxial growth and thermal oxidation (RGTO) of tin on porous single-wall carbon nanotubes (SWNTs) as a template. The morphology and chemical property of thus formed nanostructures are examined. The electrical and NO(x) gas sensing properties are also investigated. The sensor exhibits a fast response time of less than 100 seconds and a good recovery. A sensing response of 23,400% to 10 ppm concentration at 200 degrees C is observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA