Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Exp Eye Res ; 244: 109940, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782178

RESUMEN

Posterior Capsule Opacification (PCO), the most frequent complication of cataract surgery, is caused by the infiltration and proliferation of lens epithelial cells (LECs) at the interface between the intraocular lens (IOL) and posterior lens capsule (PLC). According to the "no space, no cells, no PCO" theory, high affinity (or adhesion force) between the IOL and PLC would decrease the IOL: PLC interface space, hinder LEC migration, and thus reduce PCO formation. To test this hypothesis, an in vitro hemisphere-shaped simulated PLC (sPLC) was made to mimic the human IOL: PLC physical interactions and to assess their influence on LEC responses. Three commercially available IOLs with different affinities/adhesion forces toward the sPLC, including Acrylic foldable IOL, Silicone IOL, and PMMA IOL, were used in this investigation. Using the system, the physical interactions between IOLs and sPLC were quantified by measuring the adhesion force and interface space using an adhesion force apparatus and Optical Coherence Tomography, respectively. Our data shows that high adhesion force and tight binding between IOL and sPLC contribute to a small interface space (or "no space"). By introducing LECs into the in vitro system, we found that, with small interface space, among all IOLs, acrylic foldable IOLs permitted the least extent of LEC infiltration, proliferation, and differentiation (or "no cells"). Further statistical analyses using clinical data revealed that weak LEC responses are associated with low clinical PCO incidence rates (or "no PCO"). The findings support that the in vitro system could simulate IOL: PLC interplays and predict IOLs' PCO potential in support of the "no space, no cells, no PCO" hypothesis.


Asunto(s)
Opacificación Capsular , Células Epiteliales , Lentes Intraoculares , Cápsula Posterior del Cristalino , Células Epiteliales/metabolismo , Humanos , Opacificación Capsular/patología , Cápsula Posterior del Cristalino/patología , Cápsula Posterior del Cristalino/metabolismo , Proliferación Celular/fisiología , Movimiento Celular/fisiología , Células Cultivadas
2.
Environ Res ; 236(Pt 2): 116825, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37544467

RESUMEN

Endocrine Disrupting Chemicals (EDCs) are harmful compounds that enter the environment naturally or through anthropogenic activities and disrupt normal endocrine functions in humans, adversely affecting reproductive health. Among the most significant sources of EDC contaminants are the pharmaceutical, cosmetic, and packaging industries. EDCs have been identified to have a deteriorating effect on male reproductive system, as evidenced by the increasing number of male infertility cases. A large number of case studies have been published in which men exposed to EDCs experienced testicular cancer, undescended testicles, a decrease in serum testosterone levels, and poor semen quality. Furthermore, epidemiological evidence suggested a link between prenatal EDC exposure and cryptorchidism or undescended testicles, hypospadias, and decreased anogenital distance in infants. The majority of these findings, however, are incongruent due to the lack of long-term follow-up studies that would demonstrate EDCs to be associated with male reproductive disorders. This review aims to provide an overview on recent scientific progress on the association of EDCs to male reproductive health with special emphasis on its toxicity and possible mechanism of EDCs that disrupt male reproductive system.


Asunto(s)
Criptorquidismo , Disruptores Endocrinos , Neoplasias Testiculares , Embarazo , Lactante , Femenino , Humanos , Masculino , Disruptores Endocrinos/toxicidad , Análisis de Semen , Salud Reproductiva , Criptorquidismo/inducido químicamente , Criptorquidismo/epidemiología
3.
Environ Res ; 236(Pt 1): 116718, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37481060

RESUMEN

In ancient times, herbal plants were considered one of the greatest gifts from nature that human beings could receive, and about 80% of these plants have medicinal uses. In traditional medicine, Mentha arvensis, commonly known as mint, has many applications, and in the present study, the mint leaf extract has been used to synthesis nanoparticles using the mint leaf extract as a biosource for the extraction of nanoparticles. In addition to having a wide range of applications in various fields, calcium oxide (CaO) nanoparticles are also considered to be safe for human use. In order to assess the characteristics of the abstracted CaO nanoparticles, UV-visible absorption spectrophotometers, Fourier Transform Infrared spectrophotometers (FTIR), Scanning Electron Microscopes (SEMs), Dynamic Light Scattering (DLS), and X-ray Diffraction Spectrophotometers (XRDs) were used. By conducting a protein denaturation assay and nitric oxide scavenging assay, mint leaf mediated CaO nanoparticles were evaluated for their therapeutic applications. MTT assays were used to prove that the CaO nanoparticles mediated by mint leaf had anti-cancer properties. By examining the ability of mint leaf mediated CaO nanoparticles to degrade various dyes such as methyl red, methyl orange, and methylene blue, which are the most used azo dyes in textile industries resulting in water contamination, the ability of these nanoparticles to act as a photocatalytic agent was examined.


Asunto(s)
Mentha , Nanopartículas del Metal , Nanopartículas , Humanos , Extractos Vegetales/farmacología , Colorantes , Difracción de Rayos X , Antiinflamatorios , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos
4.
Environ Res ; 236(Pt 1): 116747, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37500035

RESUMEN

In the present study, cobalt oxide nanoparticles have been synthesized using the root extract of Curcuma longa in a manner that is both environmentally friendly and economical. Initially, the synthesized nanoparticles were characterized using a UV-Vis spectroscopy analysis, in which plasma resonance at 345 nm was observed, which confirmed that CL-Cobalt oxide nanoparticles were synthesized. While FTIR analysis showed a peak at 597.37 cm-1 indicating Co-O stretching vibration. In addition, DLS, SEM and XRD analyses confirmed the synthesis of polydispersed (average size distribution of 97.5 ± 35.1 nm), cubic phase structure, and spherical-shaped CL-Cobalt oxide nanoparticles. CL-Cobalt oxide nanoparticles synthesized from green materials showed antioxidant and antimicrobial properties. CL-Cobalt oxide nanoparticles exhibited antibacterial activity against Gram negative (Klebsiella pneumoniae and Escherichia coli) and Gram positive bacteria (Bacillus subtilis, Staphylococcus aureus), while CL-Cobalt oxide nanoparticles additionally displayed significant antifungal activity against Aspergillus niger. CL-Cobalt oxide also showed application in a bioremediation perspective by showing strong photocatalytic degradation of methyl red, methyl orange and methyl blue dye. In addition, CL-Cobalt oxide also demonstrated anticancer activity against MDA-MB-468 cancer cell lines with an IC50 value of 150.8 µg/ml. Therefore, this is the first and foremost report on CL-Cobalt oxide nanoparticles synthesized using Curcuma longa showing antioxidant, antibacterial, antifungal, dye degradation and anticancer applications.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Antioxidantes/farmacología , Antifúngicos , Curcuma , Nanopartículas del Metal/química , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA