Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Clin Transl Med ; 12(5): e810, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35560527

RESUMEN

BACKGROUND: The risk of esophageal adenocarcinoma (EAC) is associated with gastro-esophageal reflux disease (GERD) and obesity. Lipid metabolism-targeted therapies decrease the risk of progressing from Barrett's esophagus (BE) to EAC, but the precise lipid metabolic changes and their roles in genotoxicity during EAC development are yet to be established. METHODS: Esophageal biopsies from the normal epithelium (NE), BE, and EAC, were analyzed using concurrent lipidomics and proteomics (n = 30) followed by orthogonal validation on independent samples using RNAseq transcriptomics (n = 22) and immunohistochemistry (IHC, n = 80). The EAC cell line FLO-1 was treated with FADS2 selective inhibitor SC26196, and/or bile acid cocktail, followed by immunofluorescence staining for γH2AX. RESULTS: Metabolism-focused Reactome analysis of the proteomics data revealed enrichment of fatty acid metabolism, ketone body metabolism, and biosynthesis of specialized pro-resolving mediators in EAC pathogenesis. Lipidomics revealed progressive alterations (NE-BE-EAC) in glycerophospholipid synthesis with decreasing triglycerides and increasing phosphatidylcholine and phosphatidylethanolamine, and sphingolipid synthesis with decreasing dihydroceramide and increasing ceramides. Furthermore, a progressive increase in lipids with C20 fatty acids and polyunsaturated lipids with ≥4 double bonds were also observed. Integration with transcriptome data identified candidate enzymes for IHC validation: Δ4-Desaturase, Sphingolipid 1 (DEGS1) which desaturates dihydroceramide to ceramide, and Δ5 and Δ6-Desaturases (fatty acid desaturases, FADS1 and FADS2), responsible for polyunsaturation. All three enzymes showed significant increases from BE through dysplasia to EAC, but transcript levels of DEGS1 were decreased suggesting post-translational regulation. Finally, the FADS2 selective inhibitor SC26196 significantly reduced polyunsaturated lipids with three and four double bonds and reduced bile acid-induced DNA double-strand breaks in FLO-1 cells in vitro. CONCLUSIONS: Integrated multiomics revealed sphingolipid and phospholipid metabolism rewiring during EAC development. FADS2 inhibition and reduction of the high polyunsaturated lipids effectively protected EAC cells from bile acid-induced DNA damage in vitro, potentially through reduced lipid peroxidation.


Asunto(s)
Adenocarcinoma , Esófago de Barrett , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Esófago de Barrett/genética , Esófago de Barrett/metabolismo , Esófago de Barrett/patología , Ácidos y Sales Biliares , Daño del ADN/genética , Neoplasias Esofágicas , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos , Humanos , Esfingolípidos
2.
Proc Natl Acad Sci U S A ; 117(37): 23113-23124, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32859761

RESUMEN

Currently there is an unmet need for treatments that can prevent hypertrophic cardiomyopathy (HCM). Using a murine model we previously identified that HCM causing cardiac troponin I mutation Gly203Ser (cTnI-G203S) is associated with increased mitochondrial metabolic activity, consistent with the human condition. These alterations precede development of the cardiomyopathy. Here we examine the efficacy of in vivo treatment of cTnI-G203S mice with a peptide derived against the α-interaction domain of the cardiac L-type calcium channel (AID-TAT) on restoring mitochondrial metabolic activity, and preventing HCM. cTnI-G203S or age-matched wt mice were treated with active or inactive AID-TAT. Following treatment, targeted metabolomics was utilized to evaluate myocardial substrate metabolism. Cardiac myocyte mitochondrial metabolic activity was assessed as alterations in mitochondrial membrane potential and flavoprotein oxidation. Cardiac morphology and function were examined using echocardiography. Cardiac uptake was assessed using an in vivo multispectral imaging system. We identified alterations in six biochemical intermediates in cTnI-G203S hearts consistent with increased anaplerosis. We also reveal that AID-TAT treatment of precardiomyopathic cTnI-G203S mice, but not mice with established cardiomyopathy, restored cardiac myocyte mitochondrial membrane potential and flavoprotein oxidation, and prevented myocardial hypertrophy. Importantly, AID-TAT was rapidly targeted to the heart, and not retained by the liver or kidneys. Overall, we identify biomarkers of HCM resulting from the cTnI mutation Gly203Ser, and present a safe, preventative therapy for associated cardiomyopathy. Utilizing AID-TAT to modulate cardiac metabolic activity may be beneficial in preventing HCM in "at risk" patients with identified Gly203Ser gene mutations.


Asunto(s)
Cardiomiopatía Hipertrófica/tratamiento farmacológico , Cardiomiopatía Hipertrófica/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mutación/genética , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Péptidos/farmacología , Troponina I/metabolismo
3.
Biomolecules ; 10(5)2020 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-32429496

RESUMEN

Esophageal adenocarcinoma (EAC) incidence has been rapidly increasing, potentially associated with the prevalence of the risk factors gastroesophageal reflux disease (GERD), obesity, high-fat diet (HFD), and the precursor condition Barrett's esophagus (BE). EAC development occurs over several years, with stepwise changes of the squamous esophageal epithelium, through cardiac metaplasia, to BE, and then EAC. To establish the roles of GERD and HFD in initiating BE, we developed a dietary intervention model in C57/BL6 mice using experimental HFD and GERD (0.2% deoxycholic acid, DCA, in drinking water), and then analyzed the gastroesophageal junction tissue lipidome and microbiome to reveal potential mechanisms. Chronic (9 months) HFD alone induced esophageal inflammation and metaplasia, the first steps in BE/EAC pathogenesis. While 0.2% deoxycholic acid (DCA) alone had no effect on esophageal morphology, it synergized with HFD to increase inflammation severity and metaplasia length, potentially via increased microbiome diversity. Furthermore, we identify a tissue lipid signature for inflammation and metaplasia, which is characterized by elevated very-long-chain ceramides and reduced lysophospholipids. In summary, we report a non-transgenic mouse model, and a tissue lipid signature for early BE. Validation of the lipid signature in human patient cohorts could pave the way for specific dietary strategies to reduce the risk of BE in high-risk individuals.


Asunto(s)
Adenocarcinoma/etiología , Esófago de Barrett/etiología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Neoplasias Esofágicas/etiología , Metabolismo de los Lípidos , Adenocarcinoma/metabolismo , Animales , Esófago de Barrett/metabolismo , Esófago de Barrett/patología , Ácido Desoxicólico/toxicidad , Mucosa Esofágica/metabolismo , Mucosa Esofágica/patología , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Microbioma Gastrointestinal , Masculino , Ratones , Ratones Endogámicos C57BL
4.
BMC Microbiol ; 20(Suppl 1): 83, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32321427

RESUMEN

BACKGROUND: The human gut microbiome plays a critical role in the carcinogenesis of colorectal cancer (CRC). However, a comprehensive analysis of the interaction between the host and microbiome is still lacking. RESULTS: We found correlations between the change in abundance of microbial taxa, butyrate-related colonic metabolites, and methylation-associated host gene expression in colonic tumour mucosa tissues compared with the adjacent normal mucosa tissues. The increase of genus Fusobacterium abundance was correlated with a decrease in the level of 4-hydroxybutyric acid (4-HB) and expression of immune-related peptidase inhibitor 16 (PI16), Fc Receptor Like A (FCRLA) and Lymphocyte Specific Protein 1 (LSP1). The decrease in the abundance of another potentially 4-HB-associated genus, Prevotella 2, was also found to be correlated with the down-regulated expression of metallothionein 1 M (MT1M). Additionally, the increase of glutamic acid-related family Halomonadaceae was correlated with the decreased expression of reelin (RELN). The decreased abundance of genus Paeniclostridium and genus Enterococcus were correlated with increased lactic acid level, and were also linked to the expression change of Phospholipase C Beta 1 (PLCB1) and Immunoglobulin Superfamily Member 9 (IGSF9) respectively. Interestingly, 4-HB, glutamic acid and lactic acid are all butyrate precursors, which may modify gene expression by epigenetic regulation such as DNA methylation. CONCLUSIONS: Our study identified associations between previously reported CRC-related microbial taxa, butyrate-related metabolites and DNA methylation-associated gene expression in tumour and normal colonic mucosa tissues from CRC patients, which uncovered a possible mechanism of the role of microbiome in the carcinogenesis of CRC. In addition, these findings offer insight into potential new biomarkers, therapeutic and/or prevention strategies for CRC.


Asunto(s)
Neoplasias Colorrectales/microbiología , Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Butiratos/metabolismo , Colon/metabolismo , Colon/microbiología , Colon/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Metilación de ADN , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Humanos , Mucosa Intestinal/metabolismo , Metaboloma , Proteína Reelina , Transcriptoma
5.
Cell Rep ; 30(8): 2712-2728.e8, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32101747

RESUMEN

Histone deacetylases (HDACs) drive innate immune cell-mediated inflammation. Here we identify class IIa HDACs as key molecular links between Toll-like receptor (TLR)-inducible aerobic glycolysis and macrophage inflammatory responses. A proteomic screen identified the glycolytic enzyme pyruvate kinase M isoform 2 (Pkm2) as a partner of proinflammatory Hdac7 in murine macrophages. Myeloid-specific Hdac7 overexpression in transgenic mice amplifies lipopolysaccharide (LPS)-inducible lactate and promotes a glycolysis-associated inflammatory signature. Conversely, pharmacological or genetic targeting of Hdac7 and other class IIa HDACs attenuates LPS-inducible glycolysis and accompanying inflammatory responses in macrophages. We show that an Hdac7-Pkm2 complex acts as an immunometabolism signaling hub, whereby Pkm2 deacetylation at lysine 433 licenses its proinflammatory functions. Disrupting this complex suppresses inflammatory responses in vitro and in vivo. Class IIa HDACs are thus pivotal intermediates connecting TLR-inducible glycolysis to inflammation via Pkm2.


Asunto(s)
Glucólisis , Histona Desacetilasas/metabolismo , Inflamación/patología , Macrófagos/enzimología , Macrófagos/patología , Piruvato Quinasa/metabolismo , Receptores Toll-Like/metabolismo , Acetilación/efectos de los fármacos , Animales , Glucólisis/efectos de los fármacos , Células HEK293 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Unión Proteica/efectos de los fármacos , Células RAW 264.7
6.
Metab Eng ; 41: 202-211, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28442386

RESUMEN

Acetogens are attractive organisms for the production of chemicals and fuels from inexpensive and non-food feedstocks such as syngas (CO, CO2 and H2). Expanding their product spectrum beyond native compounds is dictated by energetics, particularly ATP availability. Acetogens have evolved sophisticated strategies to conserve energy from reduction potential differences between major redox couples, however, this coupling is sensitive to small changes in thermodynamic equilibria. To accelerate the development of strains for energy-intensive products from gases, we used a genome-scale metabolic model (GEM) to explore alternative ATP-generating pathways in the gas-fermenting acetogen Clostridium autoethanogenum. Shadow price analysis revealed a preference of C. autoethanogenum for nine amino acids. This prediction was experimentally confirmed under heterotrophic conditions. Subsequent in silico simulations identified arginine (ARG) as a key enhancer for growth. Predictions were experimentally validated, and faster growth was measured in media containing ARG (tD~4h) compared to growth on yeast extract (tD~9h). The growth-boosting effect of ARG was confirmed during autotrophic growth. Metabolic modelling and experiments showed that acetate production is nearly abolished and fast growth is realised by a three-fold increase in ATP production through the arginine deiminase (ADI) pathway. The involvement of the ADI pathway was confirmed by metabolomics and RNA-sequencing which revealed a ~500-fold up-regulation of the ADI pathway with an unexpected down-regulation of the Wood-Ljungdahl pathway. The data presented here offer a potential route for supplying cells with ATP, while demonstrating the usefulness of metabolic modelling for the discovery of native pathways for stimulating growth or enhancing energy availability.


Asunto(s)
Adenosina Trifosfato , Proteínas Bacterianas , Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Clostridium , Hidrógeno/metabolismo , Hidrolasas , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clostridium/enzimología , Clostridium/genética , Hidrolasas/genética , Hidrolasas/metabolismo
7.
Anaerobe ; 41: 113-124, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27492724

RESUMEN

Bacteria produce some of the most potent biomolecules known, of which many cause serious diseases such as tetanus. For prevention, billions of people and countless animals are immunised with the highly effective vaccine, industrially produced by large-scale fermentation. However, toxin production is often hampered by low yields and batch-to-batch variability. Improved productivity has been constrained by a lack of understanding of the molecular mechanisms controlling toxin production. Here we have developed a reproducible experimental framework for screening phenotypic determinants in Clostridium tetani under a process that mimics an industrial setting. We show that amino acid depletion induces production of the tetanus toxin. Using time-course transcriptomics and extracellular metabolomics to generate a 'fermentation atlas' that ascribe growth behaviour, nutrient consumption and gene expression to the fermentation phases, we found a subset of preferred amino acids. Exponential growth is characterised by the consumption of those amino acids followed by a slower exponential growth phase where peptides are consumed, and toxin is produced. The results aim at assisting in fermentation medium design towards the improvement of vaccine production yields and reproducibility. In conclusion, our work not only provides deep fermentation dynamics but represents the foundation for bioprocess design based on C. tetani physiological behaviour under industrial settings.


Asunto(s)
Clostridium tetani/metabolismo , Toxina Tetánica/biosíntesis , Adaptación Fisiológica , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/fisiología , Clostridium tetani/crecimiento & desarrollo , Medios de Cultivo/química , Metabolismo Energético , Fermentación , Hierro/metabolismo , Oligopéptidos/química , Oligopéptidos/fisiología , Plásmidos/genética , Toxina Tetánica/genética , Transcriptoma , Factores de Virulencia/genética
8.
Food Chem ; 207: 214-22, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27080899

RESUMEN

Mango and banana cell structures, which survived in vivo mastication and in vitro gastrointestinal digestion, were fermented in vitro for 48h. For both fruits, flavonoids and phenolic acids were liberated and underwent microbial metabolism involving ring fission, dehydroxylation and decarboxylation. UHPLC-PDA/Q-ToF-MS profiles revealed rapid degradation (72-78%) of most intact precursors (epicatechin and several unidentified compounds) within 10h, before the exponential phase of the cumulative gas production. Concomitant formation of catabolites (e.g. 4-hydroxyphenylacetic acid) occurred within 4-8h, while metabolism of catechin derivative and 3-(4-hydroxyphenyl)propanoic acid continued slowly for at least 48h, suggesting intact plant cell walls can be a controlling factor in microbial susceptibility. Untargeted PCA and OPLS-DA demonstrated clear classifications in the compositional fruit type and compound profiles as a function of time. Clusters and distinct discriminating compounds were recognised, which could lead to subsequent biomarker identification for establishing differences in polyphenol microbial metabolism of various fruit matrices.


Asunto(s)
Colon/metabolismo , Flavonoides/metabolismo , Frutas/química , Microbioma Gastrointestinal , Hidroxibenzoatos/metabolismo , Biotransformación , Colon/microbiología , Flavonoides/farmacocinética , Humanos , Hidroxibenzoatos/farmacocinética , Mangifera/química , Musa/química
9.
PLoS One ; 11(2): e0147956, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26829042

RESUMEN

Carica papaya leaf decoction, an Australian Aboriginal remedy, has been used widely for its healing capabilities against cancer, with numerous anecdotal reports. In this study we investigated its in vitro cytotoxicity on human squamous cell carcinoma cells followed by metabolomic profiling of Carica papaya leaf decoction and leaf juice/brewed leaf juice to determine the effects imparted by the long heating process typical of the Aboriginal remedy preparation. MTT assay results showed that in comparison with the decoction, the leaf juice not only exhibited a stronger cytotoxic effect on SCC25 cancer cells, but also produced a significant cancer-selective effect as shown by tests on non-cancerous human keratinocyte HaCaT cells. Furthermore, evidence from testing brewed leaf juice on these two cell lines suggested that the brewing process markedly reduced the selective effect of Carica papaya leaf on SCC25 cancer cells. To tentatively identify the compounds that contribute to the distinct selective anticancer activity of leaf juice, an untargeted metabolomic approach employing Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry followed by multivariate data analysis was applied. Some 90 and 104 peaks in positive and negative mode respectively were selected as discriminatory features from the chemical profile of leaf juice and >1500 putative compound IDs were obtained via database searching. Direct comparison of chromatographic and tandem mass spectral data to available reference compounds confirmed one feature as a match with its proposed authentic standard, namely pheophorbide A. However, despite pheophorbide A exhibiting cytotoxic activity on SCC25 cancer cells, it did not prove to be the compound contributing principally to the selective activity of leaf juice. With promising results suggesting stronger and more selective anticancer effects when compared to the Aboriginal remedy, Carica papaya leaf juice warrants further study to explore its activity on other cancer cell lines, as well as investigation to confirm the identity of compounds contributing to its selective effect, particularly those compounds altered by the long heating process applied during the traditional Aboriginal remedy preparation.


Asunto(s)
Carcinoma de Células Escamosas/patología , Carica/química , Nativos de Hawái y Otras Islas del Pacífico , Extractos Vegetales/farmacología , Hojas de la Planta/química , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Clorofila/análogos & derivados , Clorofila/farmacología , Cromatografía Liquida , Humanos , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Espectrometría de Masas , Metabolómica , Análisis Multivariante , Estándares de Referencia
10.
Toxins (Basel) ; 8(1)2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26712788

RESUMEN

In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer.


Asunto(s)
Antineoplásicos/farmacología , Carica , Extractos Vegetales/farmacología , Antineoplásicos/química , Carcinoma de Células Escamosas , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Flavonoides/análisis , Humanos , Espectrometría de Masas , Fenoles/análisis , Extractos Vegetales/química , Hojas de la Planta
11.
Neurobiol Dis ; 76: 87-97, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25681535

RESUMEN

The role of complement system-mediated inflammation is of key interest in seizure and epilepsy pathophysiology, but its therapeutic potential has not yet been explored. We observed that the pro-inflammatory C5a receptor, C5ar1, is upregulated in two mouse models after status epilepticus; the pilocarpine model and the intrahippocampal kainate model. The C5ar1 antagonist, PMX53, was used to assess potential anticonvulsant actions of blocking this receptor pathway. PMX53 was found to be anticonvulsant in several acute models (6Hz and corneal kindling) and one chronic seizure model (intrahippocampal kainate model). The effects in the 6Hz model were not found in C5ar1-deficient mice, or with an inactive PMX53 analogue suggesting that the anticonvulsant effect of PMX53 is C5ar1-specific. In the pilocarpine model, inhibition or absence of C5ar1 during status epilepticus lessened seizure power and protected hippocampal neurons from degeneration as well as halved SE-associated mortality. C5ar1-deficiency during pilocarpine-induced status epilepticus also was accompanied by attenuation of TNFα upregulation by microglia, suggesting that C5ar1 activation results in TNFα release contributing to disease. Patch clamp studies showed that C5a-induced microglial K(+) outward currents were also inhibited with PMX53 providing a potential mechanism to explain acute anticonvulsant effects. In conclusion, our data indicate that C5ar1 activation plays a role in seizure initiation and severity, as well as neuronal degeneration following status epilepticus. The widespread anticonvulsant activity of PMX53 suggests that C5ar1 represents a novel target for improved anti-epileptic drug development which may be beneficial for pharmaco-resistant patients.


Asunto(s)
Anticonvulsivantes/administración & dosificación , Epilepsia/tratamiento farmacológico , Péptidos Cíclicos/administración & dosificación , Receptor de Anafilatoxina C5a/antagonistas & inhibidores , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Electroencefalografía , Hipocampo/efectos de los fármacos , Hipocampo/patología , Ácido Kaínico , Masculino , Ratones , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Péptidos Cíclicos/análisis , Pilocarpina , Receptor de Anafilatoxina C5a/genética , Convulsiones/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/metabolismo
12.
Mol Microbiol ; 93(4): 797-813, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24989637

RESUMEN

One of the most significant activities induced by interferon-gamma against intracellular pathogens is the induction of IDO (indoleamine 2,3-dioxygenase) expression, which subsequently results in the depletion of tryptophan. We tested the hypothesis that human strains of Chlamydia pneumoniae are more sensitive to tryptophan limitation than animal C. pneumoniae strains. The human strains were significantly more sensitive to IFN-γ than the animal strains in a lung epithelia cell model (BEAS-2B), with exposure to 1 U ml(-1) IFN-γ resulting in complete loss of infectious yield of human strains, compared to the animal strains where reductions in infectious progeny were around 3.5-4.0 log. Strikingly, the IFN-γ induced loss of ability to form infectious progeny production was completely rescued by removal of the IFN-γ and addition of exogenous tryptophan for the human strains, but not the animal strains. In fact, a human heart strain was more capable of entering a non-infectious, viable persistent stage when exposed to IFN-γ and was also more effectively rescued, compared to a human respiratory strain. Exquisite susceptibility to IFN-γ, specifically due to tryptophan availability appears to be a core adaptation of the human C. pneumoniae strains, which may reflect the chronic nature of their infections in this host.


Asunto(s)
Chlamydophila pneumoniae/crecimiento & desarrollo , Chlamydophila pneumoniae/metabolismo , Triptófano/metabolismo , Animales , Disponibilidad Biológica , Línea Celular , Infecciones por Chlamydophila/microbiología , Infecciones por Chlamydophila/veterinaria , Chlamydophila pneumoniae/aislamiento & purificación , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Humanos , Interferón gamma/inmunología , Viabilidad Microbiana
13.
Biotechnol Bioeng ; 110(2): 660-6, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22991240

RESUMEN

Mammalian cell cultures typically exhibit an energy inefficient phenotype characterized by the consumption of large quantities of glucose and the concomitant production of large quantities of lactate. Under certain conditions, mammalian cells can switch to a more energy efficient state during which lactate is consumed. Using a metabolic model derived from a mouse genome scale model we performed flux balance analysis of Chinese hamster ovary cells before and after a metabolic switch from lactate production (in the presence of glucose) to lactate consumption (after glucose depletion). Despite a residual degree of freedom after accounting for measurements, the calculated flux ranges and associated errors were narrow enough to enable investigation of metabolic changes across the metabolic switch. Surprisingly, the fluxes through the lower part of the TCA cycle from oxoglutarate to malate were very similar (around 60 µmol/gDW/h) for both phases. A detailed analysis of the energy metabolism showed that cells consuming lactate have an energy efficiency (total ATP produced per total C-mol substrate consumed) six times greater than lactate producing cells.


Asunto(s)
Ácido Láctico/biosíntesis , Ácido Láctico/metabolismo , Modelos Biológicos , Biología de Sistemas/métodos , Adenosina Trifosfato/metabolismo , Animales , Células CHO , Proliferación Celular , Supervivencia Celular/fisiología , Cricetinae , Cricetulus , Metabolismo Energético , Glucosa/metabolismo , Espacio Intracelular/metabolismo , Redes y Vías Metabólicas
14.
Biotechnol Bioeng ; 109(6): 1404-14, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22407794

RESUMEN

Mammalian cell cultures are the predominant system for the production of recombinant proteins requiring post-translational modifications. As protein yields are a function of growth performance (among others), and performance varies greatly between culture medium (e.g., different growth rates and peak cell densities), an understanding of the biological mechanisms underpinning this variability would facilitate rational medium and process optimization, increasing product yields, and reducing costs. We employed a metabolomics approach to analyze differences in metabolite concentrations of CHO cells cultivated in three different media exhibiting different growth rates and maximum viable cell densities. Analysis of intra- and extracellular metabolite concentrations over the course of the cultures using a combination of HPLC and GC-MS, readily detected medium specific and time dependent changes. Using multivariate data analysis, we identified a range of metabolites correlating with growth rate, illustrating how metabolomics can be used to relate gross phenotypic changes to the fine details of cellular metabolism.


Asunto(s)
Células Epiteliales/química , Células Epiteliales/metabolismo , Metaboloma , Animales , Células CHO , Técnicas de Cultivo de Célula/métodos , Cricetinae , Cricetulus , Medios de Cultivo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA