Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cancer Discov ; 14(6): 994-1017, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38593348

RESUMEN

RAS-driven cancers comprise up to 30% of human cancers. RMC-6236 is a RAS(ON) multi-selective noncovalent inhibitor of the active, GTP-bound state of both mutant and wild-type variants of canonical RAS isoforms with broad therapeutic potential for the aforementioned unmet medical need. RMC-6236 exhibited potent anticancer activity across RAS-addicted cell lines, particularly those harboring mutations at codon 12 of KRAS. Notably, oral administration of RMC-6236 was tolerated in vivo and drove profound tumor regressions across multiple tumor types in a mouse clinical trial with KRASG12X xenograft models. Translational PK/efficacy and PK/PD modeling predicted that daily doses of 100 mg and 300 mg would achieve tumor control and objective responses, respectively, in patients with RAS-driven tumors. Consistent with this, we describe here objective responses in two patients (at 300 mg daily) with advanced KRASG12X lung and pancreatic adenocarcinoma, respectively, demonstrating the initial activity of RMC-6236 in an ongoing phase I/Ib clinical trial (NCT05379985). SIGNIFICANCE: The discovery of RMC-6236 enables the first-ever therapeutic evaluation of targeted and concurrent inhibition of canonical mutant and wild-type RAS-GTP in RAS-driven cancers. We demonstrate that broad-spectrum RAS-GTP inhibition is tolerable at exposures that induce profound tumor regressions in preclinical models of, and in patients with, such tumors. This article is featured in Selected Articles from This Issue, p. 897.


Asunto(s)
Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Ratones , Línea Celular Tumoral , Proteínas Proto-Oncogénicas p21(ras)/genética , Femenino , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Guanosina Trifosfato/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutación , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Masculino
2.
Nature ; 629(8013): 919-926, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589574

RESUMEN

RAS oncogenes (collectively NRAS, HRAS and especially KRAS) are among the most frequently mutated genes in cancer, with common driver mutations occurring at codons 12, 13 and 611. Small molecule inhibitors of the KRAS(G12C) oncoprotein have demonstrated clinical efficacy in patients with multiple cancer types and have led to regulatory approvals for the treatment of non-small cell lung cancer2,3. Nevertheless, KRASG12C mutations account for only around 15% of KRAS-mutated cancers4,5, and there are no approved KRAS inhibitors for the majority of patients with tumours containing other common KRAS mutations. Here we describe RMC-7977, a reversible, tri-complex RAS inhibitor with broad-spectrum activity for the active state of both mutant and wild-type KRAS, NRAS and HRAS variants (a RAS(ON) multi-selective inhibitor). Preclinically, RMC-7977 demonstrated potent activity against RAS-addicted tumours carrying various RAS genotypes, particularly against cancer models with KRAS codon 12 mutations (KRASG12X). Treatment with RMC-7977 led to tumour regression and was well tolerated in diverse RAS-addicted preclinical cancer models. Additionally, RMC-7977 inhibited the growth of KRASG12C cancer models that are resistant to KRAS(G12C) inhibitors owing to restoration of RAS pathway signalling. Thus, RAS(ON) multi-selective inhibitors can target multiple oncogenic and wild-type RAS isoforms and have the potential to treat a wide range of RAS-addicted cancers with high unmet clinical need. A related RAS(ON) multi-selective inhibitor, RMC-6236, is currently under clinical evaluation in patients with KRAS-mutant solid tumours (ClinicalTrials.gov identifier: NCT05379985).


Asunto(s)
Antineoplásicos , Mutación , Neoplasias , Proteína Oncogénica p21(ras) , Proteínas Proto-Oncogénicas p21(ras) , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Guanosina Trifosfato/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Proteína Oncogénica p21(ras)/antagonistas & inhibidores , Proteína Oncogénica p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
3.
bioRxiv ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38105998

RESUMEN

Broad-spectrum RAS inhibition holds the potential to benefit roughly a quarter of human cancer patients whose tumors are driven by RAS mutations. However, the impact of inhibiting RAS functions in normal tissues is not known. RMC-7977 is a highly selective inhibitor of the active (GTP-bound) forms of KRAS, HRAS, and NRAS, with affinity for both mutant and wild type (WT) variants. As >90% of human pancreatic ductal adenocarcinoma (PDAC) cases are driven by activating mutations in KRAS, we assessed the therapeutic potential of RMC-7977 in a comprehensive range of PDAC models, including human and murine cell lines, human patient-derived organoids, human PDAC explants, subcutaneous and orthotopic cell-line or patient derived xenografts, syngeneic allografts, and genetically engineered mouse models. We observed broad and pronounced anti-tumor activity across these models following direct RAS inhibition at doses and concentrations that were well-tolerated in vivo. Pharmacological analyses revealed divergent responses to RMC-7977 in tumor versus normal tissues. Treated tumors exhibited waves of apoptosis along with sustained proliferative arrest whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS inhibition in the setting of PDAC.

4.
Cell Rep Methods ; 1(3)2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34671754

RESUMEN

SUMMARY: A primary goal of the US National Cancer Institute's Ras initiative at the Frederick National Laboratory for Cancer Research is to develop methods to quantify RAS signaling to facilitate development of novel cancer therapeutics. We use targeted proteomics technologies to develop a community resource consisting of 256 validated multiple reaction monitoring (MRM)-based, multiplexed assays for quantifying protein expression and phosphorylation through the receptor tyrosine kinase, MAPK, and AKT signaling networks. As proof of concept, we quantify the response of melanoma (A375 and SK-MEL-2) and colorectal cancer (HCT-116 and HT-29) cell lines to BRAF inhibition by PLX-4720. These assays replace over 60 Western blots with quantitative mass spectrometry-based assays of high molecular specificity and quantitative precision, showing the value of these methods for pharmacodynamic measurements and mechanism of action studies. Methods, fit-for-purpose validation, and results are publicly available as a resource for the community at assays.cancer.gov. MOTIVATION: A lack of quantitative, multiplexable assays for phosphosignaling limits comprehensive investigation of aberrant signaling in cancer and evaluation of novel treatments. To alleviate this limitation, we sought to develop assays using targeted mass spectrometry for quantifying protein expression and phosphorylation through the receptor tyrosine kinase, MAPK, and AKT signaling networks. The resulting assays provide a resource for replacing over 60 Western blots in examining cancer signaling and tumor biology with high molecular specificity and quantitative rigor.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Espectrometría de Masas/métodos , Proteínas Tirosina Quinasas Receptoras , Quinasas de Proteína Quinasa Activadas por Mitógenos , Tirosina
5.
SLAS Discov ; 26(7): 922-932, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33896272

RESUMEN

Oncogenic forms of KRAS proteins are known to be drivers of pancreatic, colorectal, and lung cancers. The goal of this study is to identify chemical leads that inhibit oncogenic KRAS signaling. We first developed an isogenic panel of mouse embryonic fibroblast (MEF) cell lines that carry wild-type RAS, oncogenic KRAS, and oncogenic BRAF. We validated these cell lines by screening against a tool compound library of 1402 annotated inhibitors in an adenosine triphosphate (ATP)-based cell viability assay. Subsequently, this MEF panel was used to conduct a high-throughput phenotypic screen in a cell viability assay with a proprietary compound library. All 126 compounds that exhibited a selective activity against mutant KRAS were selected and prioritized based on their activities in secondary assays. Finally, five chemical clusters were chosen. They had specific activity against SW620 and LS513 over Colo320 colorectal cancer cell lines. In addition, they had no effects on BRAFV600E, MEK1, extracellular signal-regulated kinase 2 (ERK2), phosphoinositide 3-kinase alpha (PI3Kα), AKT1, or mammalian target of rapamycin (mTOR) as tested in in vitro enzymatic activity assays. Biophysical assays demonstrated that these compounds did not bind directly to KRAS. We further identified the mechanism of action and showed that three of them have CDK9 inhibitory activity. In conclusion, we have developed and validated an isogenic MEF panel that was used successfully to identify RAS oncogenic or wild-type allele-specific vulnerabilities. Furthermore, we identified sensitivity of oncogenic KRAS-expressing cells to CDK9 inhibitors, which warrants future studies of treating KRAS-driven cancers with CDK9 inhibitors.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Descubrimiento de Drogas/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Ensayos Analíticos de Alto Rendimiento , Ratones , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
6.
Anal Chem ; 92(7): 4971-4979, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32106676

RESUMEN

We have developed a rapid and sensitive single-well dual-parametric method introduced in linked RAS nucleotide exchange and RAS/RAF-RBD interaction assays. RAS mutations are frequent drivers of multiple different human cancers, but the development of therapeutic strategies has been challenging. Traditionally, efforts to disrupt the RAS function have focused on nucleotide exchange inhibitors, GTP-RAS interaction inhibitors, and activators increasing GTPase activity of mutant RAS proteins. As the amount of biological knowledge grows, targeted biochemical assays enabling high-throughput screening have become increasingly interesting. We have previously introduced a homogeneous quenching resonance energy transfer (QRET) assay for nucleotide binding studies with RAS and heterotrimeric G proteins. Here, we introduce a novel homogeneous signaling technique called QTR-FRET, which combine QRET technology and time-resolved Förster resonance energy transfer (TR-FRET). The dual-parametric QTR-FRET technique enables the linking of guanine nucleotide exchange factor-induced Eu3+-GTP association to RAS, monitored at 615 nm, and subsequent Eu3+-GTP-loaded RAS interaction with RAF-RBD-Alexa680 monitored at 730 nm. Both reactions were monitored in a single-well assay applicable for inhibitor screening and real-time reaction monitoring. This homogeneous assay enables separable detection of both nucleotide exchange and RAS/RAF interaction inhibitors using low nanomolar protein concentrations. To demonstrate a wider applicability as a screening and real-time reaction monitoring method, the QTR-FRET technique was also applied for G(i)α GTP-loading and pertussis toxin-catalyzed ADP-ribosylation of G(i)α, for which we synthesized a novel γ-GTP-Eu3+ molecule. The study indicates that the QTR-FRET detection technique presented here can be readily applied to dual-parametric assays for various targets.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Factores de Intercambio de Guanina Nucleótido/química , Guanosina Trifosfato/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-raf/química , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/genética
7.
Proc Natl Acad Sci U S A ; 116(44): 22122-22131, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31611389

RESUMEN

KRAS mutations occur in ∼35% of colorectal cancers and promote tumor growth by constitutively activating the mitogen-activated protein kinase (MAPK) pathway. KRAS mutations at codons 12, 13, or 61 are thought to prevent GAP protein-stimulated GTP hydrolysis and render KRAS-mutated colorectal cancers unresponsive to epidermal growth factor receptor (EGFR) inhibitors. We report here that KRAS G13-mutated cancer cells are frequently comutated with NF1 GAP but NF1 is rarely mutated in cancers with KRAS codon 12 or 61 mutations. Neurofibromin protein (encoded by the NF1 gene) hydrolyzes GTP directly in complex with KRAS G13D, and KRAS G13D-mutated cells can respond to EGFR inhibitors in a neurofibromin-dependent manner. Structures of the wild type and G13D mutant of KRAS in complex with neurofibromin (RasGAP domain) provide the structural basis for neurofibromin-mediated GTP hydrolysis. These results reveal that KRAS G13D is responsive to neurofibromin-stimulated hydrolysis and suggest that a subset of KRAS G13-mutated colorectal cancers that are neurofibromin-competent may respond to EGFR therapies.


Asunto(s)
Neoplasias Colorrectales/genética , Receptores ErbB/antagonistas & inhibidores , Guanosina Trifosfato/metabolismo , Neurofibromina 1/química , Proteínas Proto-Oncogénicas p21(ras)/química , Sustitución de Aminoácidos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Dominio Catalítico , Línea Celular , Neoplasias Colorrectales/tratamiento farmacológico , Proteínas Activadoras de GTPasa/metabolismo , Guanosina Trifosfato/química , Humanos , Hidrólisis , Modelos Moleculares , Neurofibromina 1/metabolismo , Neurofibromina 1/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética
8.
Semin Cancer Biol ; 54: 174-182, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29432816

RESUMEN

Development of therapeutic strategies against RAS-driven cancers has been challenging due in part to a lack of understanding of the biology of the system and the ability to design appropriate assays and reagents for targeted drug discovery efforts. Recent developments in the field have opened up new avenues for exploration both through advances in the number and quality of reagents as well as the introduction of novel biochemical and cell-based assay technologies which can be used for high-throughput screening of compound libraries. The reagents and assays developed at the NCI RAS Initiative offer a suite of new weapons that could potentially be used to enable the next generation of RAS drug discovery efforts with the hope of finding novel therapeutics for a target once deemed undruggable.


Asunto(s)
Descubrimiento de Drogas , Proteínas ras/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Descubrimiento de Drogas/métodos , Descubrimiento de Drogas/normas , Ensayos de Selección de Medicamentos Antitumorales/métodos , Ensayos de Selección de Medicamentos Antitumorales/normas , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Unión Proteica/efectos de los fármacos , Control de Calidad , Transducción de Señal/efectos de los fármacos , Proteínas ras/genética , Proteínas ras/metabolismo
9.
Sci Signal ; 11(550)2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30279169

RESUMEN

The Ras-extracellular signal-regulated kinase pathway is critical for controlling cell proliferation, and its aberrant activation drives the growth of various cancers. Because many pathogens produce toxins that inhibit Ras activity, efforts to develop effective Ras inhibitors to treat cancer could be informed by studies of Ras inhibition by pathogens. Vibrio vulnificus causes fatal infections in a manner that depends on multifunctional autoprocessing repeats-in-toxin, a toxin that releases bacterial effector domains into host cells. One such domain is the Ras/Rap1-specific endopeptidase (RRSP), which site-specifically cleaves the Switch I domain of the small GTPases Ras and Rap1. We solved the crystal structure of RRSP and found that its backbone shares a structural fold with the EreA/ChaN-like superfamily of enzymes. Unlike other proteases in this family, RRSP is not a metalloprotease. Through nuclear magnetic resonance analysis and nucleotide exchange assays, we determined that the processing of KRAS by RRSP did not release any fragments or cause KRAS to dissociate from its bound nucleotide but instead only locally affected its structure. However, this structural alteration of KRAS was sufficient to disable guanine nucleotide exchange factor-mediated nucleotide exchange and prevent KRAS from binding to RAF. Thus, RRSP is a bacterial effector that represents a previously unrecognized class of protease that disconnects Ras from its signaling network while inducing limited structural disturbance in its target.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Endopeptidasas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Transducción de Señal , Proteínas ras/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Cristalografía por Rayos X , Endopeptidasas/química , Endopeptidasas/genética , Células HeLa , Humanos , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Conformación Proteica , Proteolisis , Homología de Secuencia de Aminoácido
10.
Artículo en Inglés | MEDLINE | ID: mdl-29101115

RESUMEN

The high prevalence of KRAS mutations in human cancers and the lack of effective treatments for patients ranks KRAS among the most highly sought-after targets for preclinical oncologists. Pharmaceutical companies and academic laboratories have tried for decades to identify small molecule inhibitors of oncogenic KRAS proteins, but little progress has been made and many have labeled KRAS undruggable. However, recent progress in in silico screening, fragment-based drug design, disulfide tethered screening, and some emerging themes in RAS biology have caused the field to reconsider previously held notions about targeting KRAS. This review will cover some of the historical efforts to identify RAS inhibitors, and some of the most promising efforts currently being pursued.


Asunto(s)
Antineoplásicos/uso terapéutico , Diseño de Fármacos , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/antagonistas & inhibidores , Dimerización , Endopeptidasas/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Humanos , Inhibidores de Proteasas/uso terapéutico , Multimerización de Proteína/fisiología , Transducción de Señal/efectos de los fármacos
11.
Mol Cell ; 64(5): 875-887, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27889448

RESUMEN

Ras pathway signaling plays a critical role in cell growth control and is often upregulated in human cancer. The Raf kinases selectively interact with GTP-bound Ras and are important effectors of Ras signaling, functioning as the initiating kinases in the ERK cascade. Here, we identify a route for the phospho-inhibition of Ras/Raf/MEK/ERK pathway signaling that is mediated by the stress-activated JNK cascade. We find that key Ras pathway components, the RasGEF Sos1 and the Rafs, are phosphorylated on multiple S/TP sites in response to JNK activation and that the hyperphosphorylation of these sites renders the Rafs and Sos1 unresponsive to upstream signals. This phospho-regulatory circuit is engaged by cancer therapeutics, such as rigosertib and paclitaxel/Taxol, that activate JNK through mitotic and oxidative stress as well as by physiological regulators of the JNK cascade and may function as a signaling checkpoint to suppress the Ras pathway during conditions of cellular stress.


Asunto(s)
Glicina/análogos & derivados , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Paclitaxel , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Sulfonas , Activación Enzimática/efectos de los fármacos , Glicina/farmacocinética , Glicina/farmacología , Células HeLa , Humanos , Estrés Oxidativo , Paclitaxel/farmacocinética , Paclitaxel/farmacología , Fosforilación , Sulfonas/farmacocinética , Sulfonas/farmacología , Proteínas ras/metabolismo
12.
Sci Rep ; 5: 15916, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26522388

RESUMEN

Prenylated proteins play key roles in several human diseases including cancer, atherosclerosis and Alzheimer's disease. KRAS4b, which is frequently mutated in pancreatic, colon and lung cancers, is processed by farnesylation, proteolytic cleavage and carboxymethylation at the C-terminus. Plasma membrane localization of KRAS4b requires this processing as does KRAS4b-dependent RAF kinase activation. Previous attempts to produce modified KRAS have relied on protein engineering approaches or in vitro farnesylation of bacterially expressed KRAS protein. The proteins produced by these methods do not accurately replicate the mature KRAS protein found in mammalian cells and the protein yield is typically low. We describe a protocol that yields 5-10 mg/L highly purified, farnesylated, and methylated KRAS4b from insect cells. Farnesylated and methylated KRAS4b is fully active in hydrolyzing GTP, binds RAF-RBD on lipid Nanodiscs and interacts with the known farnesyl-binding protein PDEδ.


Asunto(s)
Lípidos/fisiología , Prenilación de Proteína/fisiología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Biofisica/métodos , Membrana Celular/metabolismo , Células Cultivadas , Guanosina Trifosfato/metabolismo , Humanos , Insectos/metabolismo , Metilación , Unión Proteica/fisiología , Quinasas raf/metabolismo
13.
Cell ; 163(5): 1237-1251, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26590425

RESUMEN

K-Ras and H-Ras share identical effectors and have similar properties; however, the high degree of tumor-type specificity associated with K-Ras and H-Ras mutations suggests that they have unique roles in oncogenesis. Here, we report that oncogenic K-Ras, but not H-Ras, suppresses non-canonical Wnt/Ca(2+) signaling, an effect that contributes strongly to its tumorigenic properties. K-Ras does this by binding to calmodulin and so reducing CaMKii activity and expression of Fzd8. Restoring Fzd8 in K-Ras mutant pancreatic cells suppresses malignancy, whereas depletion of Fzd8 in H-Ras(V12)-transformed cells enhances their tumor initiating capacity. Interrupting K-Ras-calmodulin binding using genetic means or by treatment with an orally active protein kinase C (PKC)-activator, prostratin, represses tumorigenesis in K-Ras mutant pancreatic cancer cells. These findings provide an alternative way to selectively target this "undruggable" protein.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptores de Superficie Celular/metabolismo , Vía de Señalización Wnt , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Calmodulina/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Genes ras , Humanos , Ratones , Datos de Secuencia Molecular , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Papiloma/metabolismo , Ésteres del Forbol/administración & dosificación , Fosforilación , Unión Proteica/efectos de los fármacos
14.
Per Med ; 12(3): 183-186, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29771643
15.
Genome Biol ; 15(10): 476, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25273840

RESUMEN

BACKGROUND: Protein synthesis is tightly regulated and alterations to translation are characteristic of many cancers.Translation regulation is largely exerted at initiation through the eukaryotic translation initiation factor 4 F (eIF4F). eIF4F is pivotal for oncogenic signaling as it integrates mitogenic signals to amplify production of pro-growth and pro-survival factors. Convergence of these signals on eIF4F positions this factor as a gatekeeper of malignant fate. While the oncogenic properties of eIF4F have been characterized, genome-wide evaluation of eIF4F translational output is incomplete yet critical for developing novel translation-targeted therapies. RESULTS: To understand the impact of eIF4F on malignancy, we utilized a genome-wide ribosome profiling approach to identify eIF4F-driven mRNAs in MDA-MB-231 breast cancer cells. Using Silvestrol, a selective eIF4A inhibitor, we identify 284 genes that rely on eIF4A for efficient translation. Our screen confirmed several known eIF4F-dependent genes and identified many unrecognized targets of translation regulation. We show that 5'UTR complexity determines Silvestrol-sensitivity and altering 5'UTR structure modifies translational output. We highlight physiological implications of eIF4A inhibition, providing mechanistic insight into eIF4F pro-oncogenic activity. CONCLUSIONS: Here we describe the transcriptome-wide consequence of eIF4A inhibition in malignant cells, define mRNA features that confer eIF4A dependence, and provide genetic support for Silvestrol's anti-oncogenic properties. Importantly, our results show that eIF4A inhibition alters translation of an mRNA subset distinct from those affected by mTOR-mediated eIF4E inhibition. These results have significant implications for therapeutically targeting translation and underscore a dynamic role for eIF4F in remodeling the proteome toward malignancy.


Asunto(s)
ARN Helicasas DEAD-box/fisiología , Factor 4A Eucariótico de Iniciación/fisiología , Transcriptoma/efectos de los fármacos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , ARN Helicasas DEAD-box/antagonistas & inhibidores , ARN Helicasas DEAD-box/metabolismo , Factor 4A Eucariótico de Iniciación/antagonistas & inhibidores , Factor 4A Eucariótico de Iniciación/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , Triterpenos/farmacología
16.
Nat Rev Cancer ; 14(7): 455-67, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24957944

RESUMEN

The identification of mutationally activated BRAF in many cancers altered our conception of the part played by the RAF family of protein kinases in oncogenesis. In this Review, we describe the development of BRAF inhibitors and the results that have emerged from their analysis in both the laboratory and the clinic. We discuss the spectrum of RAF mutations in human cancer and the complex interplay between the tissue of origin and the response to RAF inhibition. Finally, we enumerate mechanisms of resistance to BRAF inhibition that have been characterized and postulate how strategies of RAF pathway inhibition may be extended in scope to benefit not only the thousands of patients who are diagnosed annually with BRAF-mutated metastatic melanoma but also the larger patient population with malignancies harbouring mutationally activated RAF genes that are ineffectively treated with the current generation of BRAF kinase inhibitors.


Asunto(s)
Melanoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Resistencia a Antineoplásicos , Humanos , Melanoma/enzimología , Melanoma/genética , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Neoplasias Cutáneas/enzimología , Neoplasias Cutáneas/genética
17.
Arterioscler Thromb Vasc Biol ; 34(5): 1011-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24603679

RESUMEN

OBJECTIVE: It is well established that angiogenesis is a complex and coordinated multistep process. However, there remains a lack of information about the genes that regulate individual stages of vessel formation. Here, we aimed to define the role of human interferon-induced transmembrane protein 1 (IFITM1) during blood vessel formation. APPROACH AND RESULTS: We identified IFITM1 in a microarray screen for genes differentially regulated by endothelial cells (ECs) during an in vitro angiogenesis assay and found that IFITM1 expression was strongly induced as ECs sprouted and formed lumens. We showed by immunohistochemistry that human IFITM1 was expressed by stable blood vessels in multiple organs. siRNA-mediated knockdown of IFITM1 expression spared EC sprouting but completely disrupted lumen formation, in both in vitro and in an in vivo xeno-transplant model. ECs lacking IFITM1 underwent early stages of lumenogenesis (ie, intracellular vacuole formation) but failed to mature or expand lumens. Coimmunoprecipitation studies confirmed occludin as an IFITM1 binding partner in ECs, and immunocytochemistry showed a lack of occludin at endothelial tight junctions in the absence of IFITM1. Finally, time-lapse video microscopy revealed that IFITM1 is required for the formation of stable cell-cell contacts during endothelial lumen formation. CONCLUSIONS: IFITM1 is essential for the formation of functional blood vessels and stabilizes EC-EC interactions during endothelial lumen formation by regulating tight junction assembly.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica , Animales , Antígenos de Diferenciación/genética , Células Cultivadas , Perfilación de la Expresión Génica/métodos , Células Endoteliales de la Vena Umbilical Humana/trasplante , Humanos , Inmunoprecipitación , Ratones , Ratones Endogámicos ICR , Ratones SCID , Microscopía por Video , Ocludina/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Interferencia de ARN , Transducción de Señal , Uniones Estrechas/metabolismo , Factores de Tiempo , Imagen de Lapso de Tiempo , Transfección
18.
Cancer Res ; 74(8): 2238-45, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24523442

RESUMEN

Treatment with RAF inhibitors such as vemurafenib causes the development of cutaneous squamous cell carcinomas (cSCC) or keratoacanthomas as a side effect in 18% to 30% of patients. It is known that RAF inhibitors activate the mitogen-activated protein kinase (MAPK) pathway and stimulate growth of RAS-mutated cells, possibly accounting for up to 60% of cSCC or keratoacanthoma lesions with RAS mutations, but other contributing events are obscure. To identify such events, we evaluated tumors from patients treated with vemurafenib for the presence of human papilloma virus (HPV) DNA and identified 13% to be positive. Using a transgenic murine model of HPV-driven cSCC (K14-HPV16 mice), we conducted a functional test to determine whether administration of RAF inhibitors could promote cSCC in HPV-infected tissues. Vemurafenib treatment elevated MAPK markers and increased cSCC incidence from 22% to 70% in this model. Furthermore, 55% of the cSCCs arising in vemurafenib-treated mice exhibited a wild-type Ras genotype, consistent with the frequency observed in human patients. Our results argue that HPV cooperates with vemurafenib to promote tumorigenesis, in either the presence or absence of RAS mutations.


Asunto(s)
Carcinoma de Células Escamosas/etiología , Papillomavirus Humano 16/fisiología , Indoles/efectos adversos , Neoplasias Cutáneas/etiología , Sulfonamidas/efectos adversos , Animales , Carcinoma de Células Escamosas/inducido químicamente , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/virología , Línea Celular Tumoral , Detección Precoz del Cáncer , Genotipo , Papillomavirus Humano 16/genética , Humanos , Indoles/administración & dosificación , Queratina-14/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/virología , Sulfonamidas/administración & dosificación , Vemurafenib
19.
Cancer Cell ; 23(5): 594-602, 2013 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-23680146

RESUMEN

ATP competitive inhibitors of the BRAF(V600E) oncogene paradoxically activate downstream signaling in cells bearing wild-type BRAF (BRAF(WT)). In this study, we investigate the biochemical mechanism of wild-type RAF (RAF(WT)) activation by multiple catalytic inhibitors using kinetic analysis of purified BRAF(V600E) and RAF(WT) enzymes. We show that activation of RAF(WT) is ATP dependent and directly linked to RAF kinase activity. These data support a mechanism involving inhibitory autophosphorylation of RAF's phosphate-binding loop that, when disrupted either through pharmacologic or genetic alterations, results in activation of RAF and the mitogen-activated protein kinase (MAPK) pathway. This mechanism accounts not only for compound-mediated activation of the MAPK pathway in BRAF(WT) cells but also offers a biochemical mechanism for BRAF oncogenesis.


Asunto(s)
Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Quinasas raf/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/fisiología , Línea Celular Tumoral , Humanos , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas B-raf/fisiología , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Proto-Oncogénicas c-raf/fisiología , Quinasas raf/genética , Quinasas raf/metabolismo
20.
Circ Res ; 102(6): 637-52, 2008 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-18369162

RESUMEN

Vascular morphogenesis encompasses a temporally regulated set of morphological changes that endothelial cells undergo to generate a network of interconnected tubules. Such a complex process inevitably involves multiple cell signaling pathways that must be tightly coordinated in time and space. The formation of a new capillary involves endothelial cell activation, migration, alignment, proliferation, tube formation, branching, anastomosis, and maturation of intercellular junctions and the surrounding basement membrane. Each of these stages is either known or suspected to fall under the influence of the vascular endothelial growth factor, notch, and transforming growth factor-beta/bone morphogenetic protein signaling pathways. Vascular endothelial growth factor is essential for initiation of angiogenic sprouting, and also regulates migration of capillary tip cells, proliferation of trunk cells, and gene expression in both. Notch has been implicated in the regulation of cell fate decisions in the vasculature, especially the choice between arterial and venular endothelial cells, and between tip and trunk cell phenotype. Transforming growth factor-beta regulates cell migration and proliferation, as well as matrix synthesis. In this review, we emphasize how crosstalk between these pathways is essential for proper patterning of the vasculature and offer a transcriptional oscillator model to explain how these pathways might interact to generate new tip cells during retinal angiogenesis.


Asunto(s)
Capilares/metabolismo , Neovascularización Fisiológica , Receptores Notch/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Capilares/embriología , Células Endoteliales/metabolismo , Retroalimentación Fisiológica , Humanos , Morfogénesis , Vasos Retinianos/embriología , Vasos Retinianos/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA