Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Tissue Eng Regen Med ; 6(10): e74-86, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22761168

RESUMEN

Stable pluripotent feeder-free propagation of human embryonic stem cells (hESCs) prior to their therapeutic applications remains a major challenge. Matrigel™ (BD Singapore) is a murine sarcoma-derived extracellular matrix (ECM) widely used as a cell-free support combined with conditioned or chemically defined media; however, inherent xenogenic and immunological threats invalidate it for clinical applications. Using human fibrogenic cells to generate ECM is promising but currently suffers from inefficient and time-consuming deposition in vitro. We recently showed that macromolecular crowding (MMC) accelerated ECM deposition substantially in vitro. In the current study, we used dextran sulfate 500 kDa as a macromolecular crowder to induce WI-38 fetal human lung fibroblasts at 0.5% serum condition to deposit human ECM in three days. After decellularization, the generated ECMs allowed stable propagation of H9 hESCs over 20 passages in chemically-defined medium (mTEsR1) with an overall improved outcome compared to Matrigel in terms of population doubling while retaining teratoma formation and differentiation capacity. Of significance, only ECMs generated by MMC allowed the successful propagation of hESCs. ECMs were highly complex and in contrast to Matrigel, contained no vitronectin but did contain collagen XII, ig-h3 and novel for hESC-supporting human matrices, substantial amounts of transglutaminase 2. Genome-wide analysis of promoter DNA methylation states revealed high overall similarity between human ECM- and Matrigel-cultured hESCs; however, distinct differences were observed with 49 genes associated with a variety of cellular functions. Thus, human ECMs deposited by MMC by selected fibroblast lines are a suitable human microenvironment for stable hESC propagation and clinically translational settings.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Embrionarias , Matriz Extracelular , Fibroblastos , Células Madre Pluripotentes , Línea Celular , Metilación de ADN , Sulfato de Dextran/química , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
2.
Biomacromolecules ; 12(10): 3621-8, 2011 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-21861465

RESUMEN

Polymerization of high internal phase emulsions (polyHIPEs) is a relatively new method for the production of high-porosity scaffolds. The tunable architecture of these polyHIPE foams makes them attractive candidates for tissue engineered bone grafts. Previously studied polyHIPE systems require either toxic diluents or high cure temperatures which prohibit their use as an injectable bone graft. In contrast, we have developed an injectable polyHIPE that cures at physiological temperatures to a rigid, high-porosity foam. First, a biodegradable macromer, propylene fumarate dimethacrylate (PFDMA), was synthesized that has appropriate viscosity and hydrophobicity for emulsification. The process of surfactant selection is detailed with particular focus on the key structural features of both polymer (logP values, hydrogen bond acceptor sites) and surfactant (HLB values, hydrogen bond donor sites) that enable stable HIPE formation. Incubation of HIPEs at 37 °C was used to initiate radical cross-linking of the unsaturated double bond of the methacrylate groups to polymerize the continuous phase and lock in the emulsion geometry. The resulting polyHIPEs exhibited ~75% porosity, pore sizes ranging from 4 to 29 µm, and an average compressive modulus and strength of 33 and 5 MPa, respectively. These findings highlight the great potential of these scaffolds as injectable, tissue engineered bone grafts.


Asunto(s)
Materiales Biocompatibles/síntesis química , Huesos/química , Inyecciones/métodos , Polímeros/síntesis química , Estirenos/síntesis química , Ingeniería de Tejidos/métodos , Células 3T3 , Animales , Materiales Biocompatibles/farmacología , Huesos/metabolismo , Supervivencia Celular/efectos de los fármacos , Emulsiones , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fumaratos/química , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ensayo de Materiales , Metacrilatos/química , Ratones , Polímeros/farmacología , Polipropilenos/química , Porosidad , Estirenos/farmacología , Andamios del Tejido , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA