Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119572, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37659504

RESUMEN

Heterozygous germline variants in ATP1A1, the gene encoding the α1 subunit of the Na+/K+-ATPase (NKA), have been linked to diseases including primary hyperaldosteronism and the peripheral neuropathy Charcot-Marie-Tooth disease (CMT). ATP1A1 variants that cause CMT induce loss-of-function of NKA. This heterodimeric (αß) enzyme hydrolyzes ATP to establish transmembrane electrochemical gradients of Na+ and K+ that are essential for electrical signaling and cell survival. Of the 4 catalytic subunit isoforms, α1 is ubiquitously expressed and is the predominant paralog in peripheral axons. Human population sequencing datasets indicate strong negative selection against both missense and protein-null ATP1A1 variants. To test whether haploinsufficiency generated by heterozygous protein-null alleles are sufficient to cause disease, we tested the neuromuscular characteristics of heterozygous Atp1a1+/- knockout mice and their wildtype littermates, while also evaluating if exercise increased CMT penetrance. We found that Atp1a1+/- mice were phenotypically normal up to 18 months of age. Consistent with the observations in mice, we report clinical phenotyping of a healthy adult human who lacks any clinical features of known ATP1A1-related diseases despite carrying a plasma-membrane protein-null early truncation variant, p.Y148*. Taken together, these results suggest that a malfunctioning gene product is required for disease induction by ATP1A1 variants and that if any pathology is associated with protein-null variants, they may display low penetrance or high age of onset.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , ATPasa Intercambiadora de Sodio-Potasio , Adulto , Animales , Humanos , Ratones , Alelos , Enfermedad de Charcot-Marie-Tooth/genética , Isoformas de Proteínas/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(41): e2301207120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37782798

RESUMEN

Enzymes from ectotherms living in chronically cold environments have evolved structural innovations to overcome the effects of temperature on catalysis. Cold adaptation of soluble enzymes is driven by changes within their primary structure or the aqueous milieu. For membrane-embedded enzymes, like the Na+/K+-ATPase, the situation is different because changes to the lipid bilayer in which they operate may also be relevant. Although much attention has been focused on thermal adaptation within lipid bilayers, relatively little is known about the contribution of structural changes within membrane-bound enzymes themselves. The identification of specific mutations that confer temperature compensation is complicated by the presence of neutral mutations, which can be more numerous. In the present study, we identified specific amino acids in a Na+/K+-ATPase from an Antarctic octopus that underlie cold resistance. Our approach was to generate chimeras between an Antarctic clone and a temperate ortholog and then study their temperature sensitivities in Xenopus oocytes using an electrophysiological approach. We identified 12 positions in the Antarctic Na+/K+-ATPase that, when transferred to the temperate ortholog, were sufficient to confer cold tolerance. Furthermore, although all 12 Antarctic mutations were required for the full phenotype, a single leucine in the third transmembrane segment (M3) imparted most of it. Mutations that confer cold resistance are mostly in transmembrane segments, at positions that face the lipid bilayer. We propose that the interface between a transmembrane enzyme and the lipid bilayer is a critical determinant of temperature sensitivity and, accordingly, has been a prime evolutionary target for thermal adaptation.


Asunto(s)
Membrana Dobles de Lípidos , Octopodiformes , ATPasa Intercambiadora de Sodio-Potasio , Aclimatación/genética , Aminoácidos , Regiones Antárticas , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Octopodiformes/enzimología , Animales
3.
Brain ; 146(8): 3162-3171, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37043503

RESUMEN

ATP1A3 encodes the α3 subunit of the sodium-potassium ATPase, one of two isoforms responsible for powering electrochemical gradients in neurons. Heterozygous pathogenic ATP1A3 variants produce several distinct neurological syndromes, yet the molecular basis for phenotypic variability is unclear. We report a novel recurrent variant, ATP1A3(NM_152296.5):c.2324C>T; p.(Pro775Leu), in nine individuals associated with the primary clinical features of progressive or non-progressive spasticity and developmental delay/intellectual disability. No patients fulfil diagnostic criteria for ATP1A3-associated syndromes, including alternating hemiplegia of childhood, rapid-onset dystonia-parkinsonism or cerebellar ataxia-areflexia-pes cavus-optic atrophy-sensorineural hearing loss (CAPOS), and none were suspected of having an ATP1A3-related disorder. Uniquely among known ATP1A3 variants, P775L causes leakage of sodium ions and protons into the cell, associated with impaired sodium binding/occlusion kinetics favouring states with fewer bound ions. These phenotypic and electrophysiologic studies demonstrate that ATP1A3:c.2324C>T; p.(Pro775Leu) results in mild ATP1A3-related phenotypes resembling complex hereditary spastic paraplegia or idiopathic spastic cerebral palsy. Cation leak provides a molecular explanation for this genotype-phenotype correlation, adding another mechanism to further explain phenotypic variability and highlighting the importance of biophysical properties beyond ion transport rate in ion transport diseases.


Asunto(s)
Ataxia Cerebelosa , Discapacidad Intelectual , Humanos , Mutación/genética , Síndrome , Discapacidad Intelectual/genética , Ataxia Cerebelosa/genética , Fenotipo , Espasticidad Muscular/genética , Cationes , ATPasa Intercambiadora de Sodio-Potasio/genética
4.
J Comp Neurol ; 530(3): 627-647, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34415061

RESUMEN

Mutations in genes encoding Na+ /K+ -ATPase α1, α2, and α3 subunits cause a wide range of disabling neurological disorders, and dysfunction of Na+ /K+ -ATPase may contribute to neuronal injury in stroke and dementia. To better understand the pathogenesis of these diseases, it is important to determine the expression patterns of the different Na+ /K+ -ATPase subunits within the brain and among specific cell types. Using two available scRNA-Seq databases from the adult mouse nervous system, we examined the mRNA expression patterns of the different isoforms of the Na+ /K+ -ATPase α, ß and Fxyd subunits at the single-cell level among brain regions and various neuronal populations. We subsequently identified specific types of neurons enriched with transcripts for α1 and α3 isoforms and elaborated how α3-expressing neuronal populations govern cerebellar neuronal circuits. We further analyzed the co-expression network for α1 and α3 isoforms, highlighting the genes that positively correlated with α1 and α3 expression. The top 10 genes for α1 were Chn2, Hpcal1, Nrgn, Neurod1, Selm, Kcnc1, Snrk, Snap25, Ckb and Ccndbp1 and for α3 were Sorcs3, Eml5, Neurod2, Ckb, Tbc1d4, Ptprz1, Pvrl1, Kirrel3, Pvalb, and Asic2.


Asunto(s)
ATPasa Intercambiadora de Sodio-Potasio , Sodio , Animales , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas , ARN Mensajero/metabolismo , Receptores de Superficie Celular/metabolismo , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
5.
Biophys J ; 119(2): 236-242, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32579966

RESUMEN

The Na+/K+-ATPase is a chemical molecular machine responsible for the movement of Na+ and K+ ions across the cell membrane. These ions are moved against their electrochemical gradients, so the protein uses the free energy of ATP hydrolysis to transport them. In fact, the Na+/K+-ATPase is the single largest consumer of energy in most cells. In each pump cycle, the protein sequentially exports 3Na+ out of the cell, then imports 2K+ into the cell at an approximate rate of 200 cycles/s. In each half cycle of the transport process, there is a state in which ions are stably trapped within the permeation pathway of the protein by internal and external gates in their closed states. These gates are required to open alternately; otherwise, passive ion diffusion would be a wasteful end of the cell's energy. Once one of these gates open, ions diffuse from their binding sites to the accessible milieu, which involves moving through part of the electrical field across the membrane. Consequently, ions generate transient electrical currents first discovered more than 30 years ago. They have been studied in a variety of preparations, including native and heterologous expression systems. Here, we review three decades' worth of work using these transient electrical signals to understand the kinetic transitions of the movement of Na+ and K+ ions through the Na+/K+-ATPase and propose the significance that this work might have to the understanding of the dysfunction of human pump orthologs responsible for some newly discovered neurological pathologies.


Asunto(s)
ATPasa Intercambiadora de Sodio-Potasio , Sodio , Biofisica , Humanos , Iones/metabolismo , Cinética , Potasio/metabolismo , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
6.
Sci Rep ; 7: 41646, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28139741

RESUMEN

Heterotetramer voltage-gated K+ (KV) channels KV2.1/KV6.4 display a gating charge-voltage (QV) distribution composed by two separate components. We use state dependent chemical accessibility to cysteines substituted in either KV2.1 or KV6.4 to assess the voltage sensor movements of each subunit. By comparing the voltage dependences of chemical modification and gating charge displacement, here we show that each gating charge component corresponds to a specific subunit forming the heterotetramer. The voltage sensors from KV6.4 subunits move at more negative potentials than the voltage sensors belonging to KV2.1 subunits. These results indicate that the voltage sensors from the tetrameric channels move independently. In addition, our data shows that 75% of the total charge is attributed to KV2.1, while 25% to KV6.4. Thus, the most parsimonious model for KV2.1/KV6.4 channels' stoichiometry is 3:1.


Asunto(s)
Activación del Canal Iónico , Multimerización de Proteína , Canales de Potasio Shab/química , Canales de Potasio Shab/metabolismo , Secuencia de Aminoácidos , Línea Celular , Células Cultivadas , Humanos , Potenciales de la Membrana , Subunidades de Proteína , Canales de Potasio Shab/genética
7.
Nat Commun ; 6: 7622, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26205423

RESUMEN

The Na(+)/K(+)-ATPase restores sodium (Na(+)) and potassium (K(+)) electrochemical gradients dissipated by action potentials and ion-coupled transport processes. As ions are transported, they become transiently trapped between intracellular and extracellular gates. Once the external gate opens, three Na(+) ions are released, followed by the binding and occlusion of two K(+) ions. While the mechanisms of Na(+) release have been well characterized by the study of transient Na(+) currents, smaller and faster transient currents mediated by external K(+) have been more difficult to study. Here we show that external K(+) ions travelling to their binding sites sense only a small fraction of the electric field as they rapidly and simultaneously become occluded. Consistent with these results, molecular dynamics simulations of a pump model show a wide water-filled access channel connecting the binding site to the external solution. These results suggest a mechanism of K(+) gating different from that of Na(+) occlusion.


Asunto(s)
Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Decapodiformes , Simulación de Dinámica Molecular , Técnicas de Placa-Clamp
8.
J Mol Biol ; 427(6 Pt B): 1335-1344, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25637661

RESUMEN

With the use of the energy of ATP hydrolysis, the Na+/K+-ATPase is able to transport across the cell membrane Na+ and K+ against their electrochemical gradients. The enzyme is strongly inhibited by ouabain and its derivatives, some that are therapeutically used for patients with heart failure (cardiotonic steroids). Using lanthanide resonance energy transfer, we trace here the conformational changes occurring on the external side of functional Na+/K+-ATPases induced by the binding of ouabain. Changes in donor/acceptor pair distances are mainly observed within the α subunit of the enzyme. To derive a structural model matching the experimental lanthanide resonance energy transfer distances measured with bound ouabain, we carried out molecular dynamics simulations with energy restraints applied simultaneously using a novel methodology with multiple non-interacting fragments. The restrained simulation, initiated from the X-ray structure of the E2(2K+) state, became strikingly similar to the X-ray structure of the sodium-bound state. The final model shows that ouabain is trapped within the external ion permeation pathway of the pump.


Asunto(s)
Adenosina Difosfato/metabolismo , Elementos de la Serie de los Lantanoides/química , Ouabaína/química , Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/química , Sodio/metabolismo , Animales , Permeabilidad de la Membrana Celular , Cristalografía por Rayos X , Decapodiformes , Transferencia Resonante de Energía de Fluorescencia , Simulación de Dinámica Molecular , Ouabaína/metabolismo , Unión Proteica , Conformación Proteica , Subunidades de Proteína , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
9.
Nat Commun ; 5: 3420, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24619022

RESUMEN

Members of the voltage-gated ion channel superfamily (VGIC) regulate ion flux and generate electrical signals in excitable cells by opening and closing pore gates. The location of the gate in voltage-gated sodium channels, a founding member of this superfamily, remains unresolved. Here we explore the chemical modification rates of introduced cysteines along the S6 helix of domain IV in an inactivation-removed background. We find that state-dependent accessibility is demarcated by an S6 hydrophobic residue; substituted cysteines above this site are not modified by charged thiol reagents when the channel is closed. These accessibilities are consistent with those inferred from open- and closed-state structures of prokaryotic sodium channels. Our findings suggest that an intracellular gate composed of a ring of hydrophobic residues is not only responsible for regulating access to the pore of sodium channels, but is also a conserved feature within canonical members of the VGIC superfamily.


Asunto(s)
Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Cisteína/química , Cisteína/genética , Electrofisiología , Evolución Molecular , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Canal de Potasio Kv.1.2/química , Canal de Potasio Kv.1.2/genética , Canal de Potasio Kv.1.2/metabolismo , Proteínas Musculares/química , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Estructura Secundaria de Proteína , Ratas , Canales de Sodio/química , Canales de Sodio/genética , Canales de Sodio/metabolismo , Relación Estructura-Actividad , Canales de Sodio Activados por Voltaje/genética
10.
PLoS One ; 7(10): e47693, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23082193

RESUMEN

A common phenotype for many genetic diseases is that the cell is unable to deliver full-length membrane proteins to the cell surface. For some forms of autism, hereditary spherocytosis and color blindness, the culprits are single point mutations to cysteine. We have studied two inheritable cysteine mutants of cyclic nucleotide-gated channels that produce achromatopsia, a common form of severe color blindness. By taking advantage of the reactivity of cysteine's sulfhydryl group, we modified these mutants with chemical reagents that attach moieties with similar chemistries to the wild-type amino acids' side chains. We show that these modifications restored proper delivery to the cell membrane. Once there, the channels exhibited normal functional properties. This strategy might provide a unique opportunity to assess the chemical nature of membrane protein traffic problems.


Asunto(s)
Membrana Celular/metabolismo , Cisteína/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación/genética , Sustitución de Aminoácidos/genética , Animales , Bovinos , Membrana Celular/efectos de los fármacos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Metanosulfonato de Etilo/análogos & derivados , Metanosulfonato de Etilo/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Mutantes/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Xenopus
11.
Nat Commun ; 3: 669, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22334072

RESUMEN

Na(+)/K(+) pumps move net charge through the cell membrane by mediating unequal exchange of intracellular Na(+) and extracellular K(+). Most charge moves during transitions that release Na(+) to the cell exterior. When pumps are constrained to bind and release only Na(+), a membrane voltage-step redistributes pumps among conformations with zero, one, two or three bound Na(+), thereby transiently generating current. By applying rapid voltage steps to squid giant axons, we previously identified three components in such transient currents, with distinct relaxation speeds: fast (which nearly parallels the voltage-jump time course), medium speed (τ(m)=0.2-0.5 ms) and slow (τ(s)=1-10 ms). Here we show that these three components are tightly correlated, both in their magnitudes and in the time courses of their changes. The correlations reveal the dynamics of the conformational rearrangements that release three Na(+) to the exterior (or sequester them into their binding sites) one at a time, in an obligatorily sequential manner.


Asunto(s)
Iones , ATPasa Intercambiadora de Sodio-Potasio/química , Sodio/química , Animales , Axones/fisiología , Membrana Celular/metabolismo , Decapodiformes , Electrofisiología/métodos , Transporte Iónico , Potenciales de la Membrana , Modelos Biológicos , Temperatura , Factores de Tiempo
12.
Proc Natl Acad Sci U S A ; 108(51): 20556-61, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22143771

RESUMEN

The Na(+)/K(+) pump is a nearly ubiquitous membrane protein in animal cells that uses the free energy of ATP hydrolysis to alternatively export 3Na(+) from the cell and import 2K(+) per cycle. This exchange of ions produces a steady-state outwardly directed current, which is proportional in magnitude to the turnover rate. Under certain ionic conditions, a sudden voltage jump generates temporally distinct transient currents mediated by the Na(+)/K(+) pump that represent the kinetics of extracellular Na(+) binding/release and Na(+) occlusion/deocclusion transitions. For many years, these events have escaped a proper thermodynamic treatment due to the relatively small electrical signal. Here, taking the advantages offered by the large diameter of the axons from the squid Dosidicus gigas, we have been able to separate the kinetic components of the transient currents in an extended temperature range and thus characterize the energetic landscape of the pump cycle and those transitions associated with the extracellular release of the first Na(+) from the deeply occluded state. Occlusion/deocclusion transition involves large changes in enthalpy and entropy as the ion is exposed to the external milieu for release. Binding/unbinding is substantially less costly, yet larger than predicted for the energetic cost of an ion diffusing through a permeation pathway, which suggests that ion binding/unbinding must involve amino acid side-chain rearrangements at the site.


Asunto(s)
Axones/fisiología , Sodio/química , Adenosina Trifosfato/química , Animales , Decapodiformes , Difusión , Electrofisiología/métodos , Hidrólisis , Iones , Cinética , Unión Proteica , ATPasa Intercambiadora de Sodio-Potasio/química , Temperatura , Termodinámica
13.
J Biol Chem ; 286(44): 38177-38183, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21911500

RESUMEN

The Na(+)/K(+) ATPase is an almost ubiquitous integral membrane protein within the animal kingdom. It is also the selective target for cardiotonic derivatives, widely prescribed inhibitors for patients with heart failure. Functional studies revealed that ouabain-sensitive residues distributed widely throughout the primary sequence of the protein. Recently, structural work has brought some consensus to the functional observations. Here, we use a spectroscopic approach to estimate distances between a fluorescent ouabain and a lanthanide binding tag (LBT), which was introduced at five different positions in the Na(+)/K(+) ATPase sequence. These five normally functional LBT-Na(+)/K(+) ATPase constructs were expressed in the cell membrane of Xenopus laevis oocytes, operating under physiological internal and external ion conditions. The spectroscopic data suggest two mutually exclusive distances between the LBT and the fluorescent ouabain. From the estimated distances and using homology models of the LBT-Na(+)/K(+) ATPase constructs, approximate ouabain positions could be determined. Our results suggest that ouabain binds at two sites along the ion permeation pathway of the Na(+)/K(+) ATPase. The external site (low apparent affinity) occupies the same region as previous structural findings. The high apparent affinity site is, however, slightly deeper toward the intracellular end of the protein. Interestingly, in both cases the lactone ring faces outward. We propose a sequential ouabain binding mechanism that is consistent with all functional and structural studies.


Asunto(s)
Ouabaína/química , ATPasa Intercambiadora de Sodio-Potasio/química , Animales , Sitios de Unión , Biofisica/métodos , Compuestos de Boro/farmacología , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas de la Membrana/química , Modelos Estadísticos , Oocitos/metabolismo , Unión Proteica , Conformación Proteica , Dispersión de Radiación , Rayos X , Xenopus laevis
14.
J Exp Biol ; 214(Pt 13): 2164-74, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21653810

RESUMEN

Because enzymatic activity is strongly suppressed by the cold, polar poikilotherms face significant adaptive challenges. For example, at 0°C the catalytic activity of a typical enzyme from a temperate organism is reduced by more than 90%. Enzymes embedded in the plasma membrane, such as the Na(+)/K(+)-ATPase, may be even more susceptible to the cold because of thermal effects on the lipid bilayer. Accordingly, adaptive changes in response to the cold may include adjustments to the enzyme or the surrounding lipid environment, or synergistic changes to both. To assess the contribution of the enzyme itself, we cloned orthologous Na(+)/K(+)-ATPase α-subunits from an Antarctic (Pareledone sp.; -1.8°C) and a temperate octopus (Octopus bimaculatus; ∼18°C), and compared their turnover rates and temperature sensitivities in a heterologous expression system. The primary sequences of the two pumps were found to be highly similar (97% identity), with most differences being conservative changes involving hydrophobic residues. The physiology of the pumps was studied using an electrophysiological approach in intact Xenopus oocytes. The voltage dependence of the pumps was equivalent. However, at room temperature the maximum turnover rate of the Antarctic pump was found to be 25% higher than that of the temperate pump. In addition, the Antarctic pump exhibited a lower temperature sensitivity, leading to significantly higher relative activity at lower temperatures. Orthologous Na(+)/K(+) pumps were then isolated from two tropical and two Arctic octopus. The temperature sensitivities of these pumps closely matched those of the temperate and Antarctic pumps, respectively. Thus, reduced thermal sensitivity appears to be a common mechanism driving cold adaptation in the Na(+)/K(+)-ATPase.


Asunto(s)
ATPasa Intercambiadora de Sodio-Potasio/química , Aclimatación/genética , Adaptación Fisiológica/genética , Secuencia de Aminoácidos , Animales , Regiones Antárticas , Sitios de Unión , Membrana Celular/metabolismo , Electrofisiología/métodos , Iones , Membrana Dobles de Lípidos/química , Conformación Molecular , Datos de Secuencia Molecular , Isoformas de Proteínas , Estructura Terciaria de Proteína , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Temperatura , Xenopus
15.
PLoS Biol ; 8(11): e1000540, 2010 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-21124885

RESUMEN

Because firing properties and metabolic rates vary widely, neurons require different transport rates from their Na(+)/K(+) pumps in order to maintain ion homeostasis. In this study we show that Na(+)/K(+) pump activity is tightly regulated by a novel process, RNA editing. Three codons within the squid Na(+)/K(+) ATPase gene can be recoded at the RNA level, and the efficiency of conversion for each varies dramatically, and independently, between tissues. At one site, a highly conserved isoleucine in the seventh transmembrane span can be converted to a valine, a change that shifts the pump's intrinsic voltage dependence. Mechanistically, the removal of a single methyl group specifically targets the process of Na(+) release to the extracellular solution, causing a higher turnover rate at the resting membrane potential.


Asunto(s)
Edición de ARN , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Decapodiformes , Datos de Secuencia Molecular , Transporte de Proteínas , ARN Mensajero/química , ARN Mensajero/genética , Homología de Secuencia de Aminoácido , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/genética
16.
Biophys J ; 99(9): 2863-9, 2010 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-21044583

RESUMEN

For ion channels, the transmembrane potential plays a critical role by acting as a driving force for permeant ions. At the microscopic level, the transmembrane potential is thought to decay nonlinearly across the ion permeation pathway because of the irregular three-dimensional shape of the channel's pore. By taking advantage of the current structural and functional understanding of cyclic nucleotide-gated channels, in this study we experimentally explore the transmembrane potential's distribution across the open pore. As a readout for the voltage drop, we engineered cysteine residues along the selectivity filter and scanned the sensitivity of their modification rates by Ag(+) to the transmembrane potential. The experimental data, which indicate that the majority of the electric field drops across the selectivity filter, are in good agreement with continuum electrostatic calculations using a homology model of an open CNG channel. By focusing the transmembrane potential across the selectivity filter, the electromotive driving force is coupled with the movement of permeant ions in the filter, maximizing the efficiency of this process.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Sustitución de Aminoácidos , Animales , Fenómenos Biofísicos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Cisteína/química , Femenino , Técnicas In Vitro , Cinética , Potenciales de la Membrana , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oocitos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Electricidad Estática , Xenopus
17.
Proc Natl Acad Sci U S A ; 105(9): 3310-4, 2008 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-18287006

RESUMEN

By opening and closing the permeation pathway (gating) in response to cGMP binding, cyclic nucleotide-gated (CNG) channels serve key roles in the transduction of visual and olfactory signals. Compiling evidence suggests that the activation gate in CNG channels is not located at the intracellular end of pore, as it has been established for voltage-activated potassium (K(V)) channels. Here, we show that ion permeation in CNG channels is tightly regulated at the selectivity filter. By scanning the entire selectivity filter using small cysteine reagents, like cadmium and silver, we observed a state-dependent accessibility pattern consistent with gated access at the middle of the selectivity filter, likely at the corresponding position known to regulate structural changes in KcsA channels in response to low concentrations of permeant ions.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Activación del Canal Iónico/genética , Sustitución de Aminoácidos , Animales , Cadmio , Línea Celular , GMP Cíclico , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Cisteína , Conformación Proteica , Plata , Especificidad por Sustrato , Transfección
18.
J Gen Physiol ; 130(1): 41-54, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17562821

RESUMEN

Palytoxin binds to Na(+)/K(+) pumps in the plasma membrane of animal cells and opens an electrodiffusive cation pathway through the pumps. We investigated properties of the palytoxin-opened channels by recording macroscopic and microscopic currents in cell bodies of neurons from the giant fiber lobe, and by simultaneously measuring net current and (22)Na(+) efflux in voltage-clamped, internally dialyzed giant axons of the squid Loligo pealei. The conductance of single palytoxin-bound "pump-channels" in outside-out patches was approximately 7 pS in symmetrical 500 mM [Na(+)], comparable to findings in other cells. In these high-[Na(+)], K(+)-free solutions, with 5 mM cytoplasmic [ATP], the K(0.5) for palytoxin action was approximately 70 pM. The pump-channels were approximately 40-50 times less permeable to N-methyl-d-glucamine (NMG(+)) than to Na(+). The reversal potential of palytoxin-elicited current under biionic conditions, with the same concentration of a different permeant cation on each side of the membrane, was independent of the concentration of those ions over the range 55-550 mM. In giant axons, the Ussing flux ratio exponent (n') for Na(+) movements through palytoxin-bound pump-channels, over a 100-400 mM range of external [Na(+)] and 0 to -40 mV range of membrane potentials, averaged 1.05 +/- 0.02 (n = 28). These findings are consistent with occupancy of palytoxin-bound Na(+)/K(+) pump-channels either by a single Na(+) ion or by two Na(+) ions as might be anticipated from other work; idiosyncratic constraints are needed if the two Na(+) ions occupy a single-file pore, but not if they occupy side-by-side binding sites, as observed in related structures, and if only one of the sites is readily accessible from both sides of the membrane.


Asunto(s)
Acrilamidas/farmacología , Activación del Canal Iónico/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Sodio/metabolismo , Animales , Venenos de Cnidarios , Loligo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ouabaína/farmacología , Potasio/metabolismo
19.
Nat Struct Mol Biol ; 14(5): 427-31, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17460695

RESUMEN

Throughout evolution, enzymes have adapted to perform in different environments. The Na(+)/K(+) pump, an enzyme crucial for maintaining ionic gradients across cell membranes, is strongly influenced by the ionic environment. In vertebrates, the pump sees much less external Na(+) (100-160 mM) than it does in osmoconformers such as squid (450 mM), which live in seawater. If the extracellular architecture of the squid pump were identical to that of vertebrates, then at the resting potential, the pump's function would be severely compromised because the negative voltage would drive Na(+) ions back to their binding sites, practically abolishing forward transport. Here we show that four amino acids that ring the external mouth of the ion translocation pathway are more positive in squid, thereby reducing the pump's sensitivity to external Na(+) and explaining how it can perform optimally in the marine environment.


Asunto(s)
Aclimatación , Agua de Mar , ATPasa Intercambiadora de Sodio-Potasio/química , Aminoácidos , Animales , Decapodiformes , Electrofisiología , Evolución Molecular , ATPasa Intercambiadora de Sodio-Potasio/fisiología
20.
Biophys J ; 90(5): 1607-16, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16326910

RESUMEN

The effect of intracellular (i) and extracellular (o) Na+ on pre-steady-state transient current associated with Na+/Na+ exchange by the Na+/K+ pump was investigated in the vegetal pole of Xenopus oocytes. Current records in response to 40-ms voltage pulses from -180 to +100 mV in the absence of external Na+ were subtracted from current records obtained under Na+/Na+ exchange conditions. Na+-sensitive transient current and dihydroouabain-sensitive current were equivalent. The quantity of charge moved (Q) and the relaxation rate coefficient (ktot) of the slow component of the Nao+-sensitive transient current were measured for steps to various voltages (V). The data were analyzed using a four-state kinetic model describing the Na+ binding, occlusion, conformational change, and release steps of the transport cycle. The apparent valence of the Q vs. V relationship was near 1.0 for all experimental conditions. When extracellular Na+ was halved, the midpoint voltage of the charge distribution (Vq) shifted -25.3+/-0.4 mV, which can be accounted for by the presence of an extracellular ion-well having a dielectric distance delta=0.69+/-0.01. The effect of changes of Nai+ on Nao+-sensitive transient current was investigated. The midpoint voltage (Vq) of the charge distribution curve was not affected over the Nao+ concentration range 3.13-50 mM. As Nai+ was decreased, the amount of charge measured and its relaxation rate coefficient decreased with an apparent Km of 3.2+/-0.2 mM. The effects of lowering Nai+ on pre-steady-state transient current can be accounted for by decreasing the charge available to participate in the fast extracellular Na+ release steps, by a slowly equilibrating (phosphorylation/occlusion) step intervening between intracellular Na+ binding and extracellular Na+ release.


Asunto(s)
Líquido Intracelular/metabolismo , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Modelos Biológicos , Oocitos/enzimología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Sodio/metabolismo , Animales , Células Cultivadas , Simulación por Computador , Cinética , Electricidad Estática , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA