Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Cell Physiol ; 229(11): 1753-64, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24664951

RESUMEN

Grb10 is an intracellular adaptor protein which binds directly to several growth factor receptors, including those for insulin and insulin-like growth factor receptor-1 (IGF-1), and negatively regulates their actions. Grb10-ablated (Grb10(-/-) ) mice exhibit improved whole body glucose homeostasis and an increase in muscle mass associated specifically with an increase in myofiber number. This suggests that Grb10 may act as a negative regulator of myogenesis. In this study, we investigated in vitro, the molecular mechanisms underlying the increase in muscle mass and the improved glucose metabolism. Primary muscle cells isolated from Grb10(-/-) mice exhibited increased rates of proliferation and differentiation compared to primary cells isolated from wild-type mice. The improved proliferation capacity was associated with an enhanced phosphorylation of Akt and ERK in the basal state and changes in the expression of key cell cycle progression markers involved in regulating transition of cells from the G1 to S phase (e.g., retinoblastoma (Rb) and p21). The absence of Grb10 also promoted a faster transition to a myogenin positive, differentiated state. Glucose uptake was higher in Grb10(-/-) primary myotubes in the basal state and was associated with enhanced insulin signaling and an increase in GLUT4 translocation to the plasma membrane. These data demonstrate an important role for Grb10 as a link between muscle growth and metabolism with therapeutic implications for diseases, such as muscle wasting and type 2 diabetes.


Asunto(s)
Diferenciación Celular , Membrana Celular/metabolismo , Proteína Adaptadora GRB10/metabolismo , Eliminación de Gen , Células Musculares/citología , Células Musculares/metabolismo , Animales , Biomarcadores/metabolismo , Antígeno CD56/metabolismo , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Membrana Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Separación Celular , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína Adaptadora GRB10/genética , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Insulina/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Células Musculares/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/enzimología , Miogenina/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo
2.
PLoS One ; 6(10): e26410, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22039481

RESUMEN

Lifelong, many somatic tissues are replenished by specialized adult stem cells. These stem cells are generally rare, infrequently dividing, occupy a unique niche, and can rapidly respond to injury to maintain a steady tissue size. Despite these commonalities, few shared regulatory mechanisms have been identified. Here, we scrutinized data comparing genes expressed in murine long-term hematopoietic stem cells with their differentiated counterparts and observed that a disproportionate number were members of the developmentally-important, monoallelically expressed imprinted genes. Studying a subset, which are members of a purported imprinted gene network (IGN), we found their expression in HSCs rapidly altered upon hematopoietic perturbations. These imprinted genes were also predominantly expressed in stem/progenitor cells of the adult epidermis and skeletal muscle in mice, relative to their differentiated counterparts. The parallel down-regulation of these genes postnatally in response to proliferation and differentiation suggests that the IGN could play a mechanistic role in both cell growth and tissue homeostasis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Impresión Genómica , Animales , Silenciador del Gen , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
Mol Endocrinol ; 23(9): 1406-14, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19541746

RESUMEN

Growth factor receptor bound (Grb)10 and Grb14 are closely related adaptor proteins that bind directly to the insulin receptor (IR) and regulate insulin-induced IR tyrosine phosphorylation and signaling to IRS-1 and Akt. Grb10- and Grb14-deficient mice both exhibit improved whole-body glucose homeostasis as a consequence of enhanced insulin signaling and, in the case of the former, altered body composition. However, the combined physiological role of these adaptors has remained undefined. In this study we utilize compound gene knockout mice to demonstrate that although deficiency in one adaptor can enhance insulin-induced IRS-1 phosphorylation and Akt activation, insulin signaling is not increased further upon dual ablation of Grb10 and Grb14. Context-dependent limiting mechanisms appear to include IR hypophosphorylation and decreased IRS-1 expression. In addition, the compound knockouts exhibit an increase in lean mass comparable to Grb10-deficient mice, indicating that this reflects a regulatory function specific to Grb10. However, despite the absence of additive effects on insulin signaling and body composition, the double-knockout mice are protected from the impaired glucose tolerance that results from high-fat feeding, whereas protection is not observed with animals deficient for individual adaptors. These results indicate that, in addition to their described effects on IRS-1/Akt, Grb10 and Grb14 may regulate whole-body glucose homeostasis by additional mechanisms and highlight these adaptors as potential therapeutic targets for amelioration of the insulin resistance associated with type 2 diabetes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína Adaptadora GRB10/química , Glucosa/metabolismo , Insulina/metabolismo , Animales , Composición Corporal , Proteína Adaptadora GRB10/metabolismo , Homeostasis , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal
4.
Mol Cell Biol ; 27(16): 5871-86, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17562854

RESUMEN

The Grb10 adapter protein is capable of interacting with a variety of receptor tyrosine kinases, including, notably, the insulin receptor. Biochemical and cell culture experiments have indicated that Grb10 might act as an inhibitor of insulin signaling. We have used mice with a disruption of the Grb10 gene (Grb10Delta2-4 mice) to assess whether Grb10 might influence insulin signaling and glucose homeostasis in vivo. Adult Grb10Delta2-4 mice were found to have improved whole-body glucose tolerance and insulin sensitivity, as well as increased muscle mass and reduced adiposity. Tissue-specific changes in insulin receptor tyrosine phosphorylation were consistent with a model in which Grb10, like the closely related Grb14 adapter protein, prevents specific protein tyrosine phosphatases from accessing phosphorylated tyrosines within the kinase activation loop. Furthermore, insulin-induced IRS-1 tyrosine phosphorylation was enhanced in Grb10Delta2-4 mutant animals, supporting a role for Grb10 in attenuation of signal transmission from the insulin receptor to IRS-1. We have previously shown that Grb10 strongly influences growth of the fetus and placenta. Thus, Grb10 forms a link between fetal growth and glucose-regulated metabolism in postnatal life and is a candidate for involvement in the process of fetal programming of adult metabolic health.


Asunto(s)
Composición Corporal , Proteína Adaptadora GRB10/genética , Impresión Genómica/genética , Glucosa/metabolismo , Homeostasis , Insulina/metabolismo , Mutación/genética , Tejido Adiposo Blanco/metabolismo , Adiposidad , Animales , Animales Recién Nacidos , Peso Corporal , Activación Enzimática , Conducta Alimentaria , Glucosa/análisis , Insulina/sangre , Leptina/sangre , Masculino , Ratones , Músculo Esquelético/metabolismo , Fosfotirosina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA