Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Aging (Albany NY) ; 13(14): 18106-18130, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34314381

RESUMEN

Therapeutic resistance and infiltrative capacities justify the aggressiveness of glioblastoma. This is due to cellular heterogeneity, especially the presence of stemness-related cells, i.e. Cancer Stem Cells (CSC). Previous studies focused on autophagy and its role in CSCs maintenance; these studies gave conflicting results as they reported either sustaining or disruptive effects. In the present work, we silenced two autophagy related genes -either Beclin1 or ATG5- by shRNA and we explored the ensuing consequences on CSCs markers' expression and functionalities. Our results showed that the down regulation of autophagy led to enhancement in expression of CSCs markers, while proliferation and clonogenicity were boosted. Temozolomide (TMZ) treatment failed to induce apoptotic death in shBeclin1-transfected cells, contrary to control. We optimized the cellular subset analysis with the use of Sedimentation Field Flow Fractionation, a biological event monitoring- and cell sorting-dedicated technique. Fractograms of both shBeclin1 and shATG5 cells exhibited a shift of elution peak as compared with control cells, showing cellular dispersion and intrinsic sub-fraction modifications. The classical stemness fraction (i.e. F3) highlighted data obtained with the overall cellular population, exhibiting enhancement of stemness markers and escape from dormancy. Our results contributed to illustrate CSCs polydispersity and to show how these cells develop capacity to bypass autophagy inhibition, thanks to their acute adaptability and plasticity.


Asunto(s)
Antineoplásicos Alquilantes/uso terapéutico , Autofagia/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Temozolomida/uso terapéutico , Proteína 5 Relacionada con la Autofagia/metabolismo , Beclina-1/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
2.
Carcinogenesis ; 38(6): 592-603, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28402394

RESUMEN

Glioblastoma multiform (GBM), the most common and aggressive primary brain tumor, is characterized by a high degree of hypoxia and resistance to therapy because of its adaptation capacities, including autophagy and growth factors signaling. In this study, we show an efficient hypoxia-induced survival autophagy in four different GBM cell lines (U87MG, M059K, M059J and LN-18) and an activation of a particular neurotrophin signaling pathway. Indeed, the enhancement of both TrkC and NT-3 was followed by downstream p38MAPK phosphorylation, suggesting the occurrence of a survival autocrine loop. Autophagy inhibition increased the hypoxia-induced expression of TrkC and its phosphorylated form as well as the phosphorylation of p38, suggesting a complementary effect of the two processes, leading to cell survival. Alone, autophagy inhibition reduced cellular growth without inducing cell death. However, the double inhibition of autophagy and TrkC signaling was necessary to bring cells to death as shown by PARP cleavage, particularly important in hypoxia. Moreover, a very high expression of TrkC and NT-3 was found in tumor sections from GBM patients, highlighting the importance of neurotrophic signaling in GBM tumor cell survival. These data suggest that a combined treatment targeting these two pathways could be considered in order to induce the death of GBM cells.


Asunto(s)
Autofagia , Neoplasias Encefálicas/patología , Glioblastoma/patología , Factores de Crecimiento Nervioso/metabolismo , Receptor trkC/metabolismo , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Glioblastoma/metabolismo , Humanos , Hipoxia , Neurotrofina 3 , Fosforilación , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA