Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Environ Sci Technol ; 57(29): 10882-10890, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37436147

RESUMEN

Gaseous elemental mercury (Hg0) extraction from industrial flue gases is undergoing intense research due to its unique properties. Selective adsorption that renders Hg0 to HgO or HgS over metal oxide- or sulfide-based sorbents is a promising method, yet the sorbents are easily poisoned by sulfur dioxide (SO2) and H2O vapor. The Se-Cl intermediate derived from SeO2 and HCl driven by SO2 has been demonstrated to stabilize Hg0. Thus, a surface-induced method was put forward when using γ-Al2O3 supported selenite-chloride (xSeO32--yCl-, named xSe-yCl) for mercury deposition. Results confirmed that under 3000 ppm SO2 and 4% H2O, Se-2Cl exhibited the highest induced adsorption performance at 160 °C and higher humidity can accelerate the induction process. Driven by SO2 under the wet interface, the in situ generated active Se0 has high affinity toward Hg0, and the introduction of Cl- enabled the fast-trapping and stabilization of Hg0 due to its intercalation in the HgSe product. Additionally, the long-time scale-up experiment showed a gradient color change of the Se-2Cl-induced surface, which maintained almost 100% Hg0 removal efficiency over 180 h with a normalized adsorption capacity of 157.26 mg/g. This surface-induced method has the potential for practical application and offers a guideline for reversing the negative effect of SO2 on gaseous pollutant removal.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Mercurio , Dióxido de Azufre , Mercurio/análisis , Cloruros , Óxidos , Adsorción , Contaminantes Atmosféricos/análisis
2.
Environ Sci Technol ; 57(13): 5424-5432, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36939455

RESUMEN

Flue gas mercury removal is mandatory for decreasing global mercury background concentration and ecosystem protection, but it severely suffers from the instability of traditional demercury products (e.g., HgCl2, HgO, HgS, and HgSe). Herein, we demonstrate a superstable Hg3Se2Cl2 compound, which offers a promising next-generation flue gas mercury removal strategy. Theoretical calculations revealed a superstable Hg bonding structure in Hg3Se2Cl2, with the highest mercury dissociation energy (4.71 eV) among all known mercury compounds. Experiments demonstrate its unprecedentedly high thermal stability (>400 °C) and strong acid resistance (5% H2SO4). The Hg3Se2Cl2 compound could be produced via the reduction of SeO32- to nascent active Se0 by the flue gas component SO2 and the subsequent combination of Se0 with Hg0 and Cl- ions or HgCl2. During a laboratory-simulated experiment, this Hg3Se2Cl2-based strategy achieves >96% removal efficiencies of both Hg0 and HgCl2 enabling nearly zero Hg0 re-emission. As expected, real mercury removal efficiency under Se-rich industrial flue gas conditions is much more efficient than Se-poor counterparts, confirming the feasibility of this Hg3Se2Cl2-based strategy for practical applications. This study sheds light on the importance of stable demercury products in flue gas mercury treatment and also provides a highly efficient and safe flue gas demercury strategy.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Mercurio/análisis , Ecosistema , Gases/química , Contaminantes Atmosféricos/análisis
3.
Environ Sci Technol ; 56(15): 10935-10944, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35867955

RESUMEN

Sulfur trioxide (SO3) is an unstable pollutant, and its removal from the gas phase of industrial flue gas remains a significant challenge. Herein, we propose a reverse conversion treatment (RCT) strategy to reduce S(VI) in SO3 to S(IV) by combining bench-scale experiments and theoretical studies. We first demonstrated that metastable sulfides can break the S-O bond in SO3, leading to the re-formation of sulfur dioxide (SO2). The RCT performance varied between mono- and binary-metal sulfides, and metastable CuS had a high SO3 conversion efficiency in the temperature range of 200-300 °C. Accordingly, the introduction of selenium (Se) lowered the electronegativity of the CuS host and enhanced its reducibility to SO3. Among the CuSe1-xSx composites, CuSe0.3S0.7 was the optimal RCT material and reached a SO2 yield of 6.25 mmol/g in 120 min. The low-valence state of selenium (Se2-/Se1-) exhibited a higher reduction activity for SO3 than did S2-/S1-; however, excessive Se doping degraded the SO3 conversion owing to the re-oxidation of SO2 by the generated SeO32-. The density functional theory calculations verified the stronger SO3 adsorption performance (Eads = -2.76 eV) and lower S-O bond breaking energy (Ea = 1.34 eV) over CuSe0.3S0.7 compared to those over CuS and CuSe. Thus, CuSe1-xSx can serve as a model material and the RCT strategy can make use of field temperature conditions in nonferrous smelters for SO3 emission control.

4.
Environ Sci Technol ; 54(18): 11594-11601, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32835473

RESUMEN

Transition metal elements doping is a conventional strategy for the modification of sulfide-based sorbents to obtain preferable Hg0 adsorption capability. One problem was that such a method could only obtain a temporary promotion to sulfides. To achieve continuous promotion of mercury capture performance, we use the difference of solubility product (Ksp) between sulfides to develop a postsynthesis approach for stepwise doping of PbS by Cu2+ ions. Moreover, it further demonstrated the restoration of PbS surface under a given high temperature, enabled by thermal migration of the foreign Cu2+ ions from outer to interlayer in PbS lattice and rereleased of S sites occupied previously by mercury. The Hg0 adsorption capacity of PbS was enlarged from 0.86 to 2.76 mg·g-1 after the first doping, resulting from the mild oxidization of S2- to S- in the surface layer by foreign Cu2+ ions. Furthermore, regeneration of spent PbS can be implemented by stepwise Cu2+ incorporation due to the renewability of the surface, enabling even better Hg0 adsorption capacity after six cycle tests. This stepwise incorporation method promises the precise utilization of doped elements, as well as offers a tutorial example for the activation and regeneration of sulfide sorbents to recover Hg0 from Hg0-rich flue gas.


Asunto(s)
Mercurio , Adsorción , Carbón Mineral , Gases , Sulfuros
5.
J Colloid Interface Sci ; 577: 503-511, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32505831

RESUMEN

Chalcogen-based materials have been confirmed to possess large adsorption capacities for gaseous elemental mercury (Hg0) from SO2-containing flue gas. However, the interface reaction mechanisms and the interfacial stability are still ambiguous. Here, we selected some commonly used chalcogen-based sorbents (e.g., X, ZnX, CuX. X = S, Se) to investigate the in-depth reaction mechanisms. The adsorption capacities, structure effect on thermal and surface mercury stability, and interfacial reaction mechanism in the absence/presence of SO2 were evaluated. The experimental results indicated that Cu-chalcogenide had higher Hg0 adsorption capacity and surface Hg-X bonding stability compared with zinc one, while they exhibited an opposite degree of thermal stability. Moreover, all the chalcogenides showed well SO2 tolerance but with a slight difference. Chalcogenides with the same crystal structures, like ZnX or CuX, exhibited similar properties in stability and interfacial Hg0 and SO2 reaction mechanism. X- in chalcogenides have a better affinity to mercury, while in the Hg0 capture process, the existence of multivalent metal elements (like Cu2+ and Cu+) can faster the Hg0 oxidation for the further chemical-adsorption. This work provides a basic understanding of the application for efficiently enriching and recycling gaseous Hg0 from industrial SO2-containing flue gas.

6.
J Hazard Mater ; 392: 122230, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32066016

RESUMEN

It is difficult to stabilize gaseous elemental mercury (Hg°) on a sorbent from SO2-containing industrial flue gas. Enhancing Hg° oxidation and activating surface-active sulfur (S*) can benefit the chemical mercury adsorption process. A Mn-SnS2 composite was prepared using the Mn modification of SnS2 nanosheets to expose more Mn oxidation and sulfur adsorption sites. The results indicate that Mn-Sn2 exhibits better Hg° removal performances at a wide temperature range of 100-250 °C. A sufficient amount of surface Mn with a valance state of Mn4+ is favorable for Hg° oxidation, while the electron transfer properties of Sn can accelerate this oxidation process. Oxidized mercury primary exists as HgS with surface S*. A larger surface area, stable crystal structure, and active valance state of each element are favorable for Hg° oxidation and adsorption. The Mn-SnS2 exhibits an excellent SO2 resistance when the SO2 concentration is lower than 1500 ppm. The effects of H2O and O2 were also evaluated. The results show that O2 has no influence, while H2O and SO2 coexisting in the flue gas have a toxic effect on the Hg° removal performance. The Mn-SnS2 has a great potential for the Hg° removal from SO2-containing flue gas such as non-ferrous smelting gas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA