Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38986517

RESUMEN

Objective: Stereoelectroencephalography (SEEG) is increasingly being recognized as an important invasive modality for presurgical evaluation of epilepsy. This study focuses on the clinical and technical considerations of SEEG investigations when using conventional frame-based stereotaxy, drawing on institutional experience and a comprehensive review of relevant literature. Methods: This retrospective observational study encompassed the surgical implantation of 201 SEEG electrodes in 16 epilepsy patients using a frame-based stereotactic instrument at a single tertiary-level center. We provide detailed descriptions of the operative procedures and technical nuances for bilateral and multiple SEEG insertions, along with several illustrative cases. Additionally, we present a literature review on the technical aspects of the SEEG procedure, discussing its clinical implications and potential risks. Results: Frame-based SEEG electrode placements were successfully performed through sagittal arc application, with the majority (81.2%) of cases being bilateral and involving up to 18 electrodes in a single operation. The median skin-to-skin operation time was 162 minutes (interquartile range [IQR], 145-200), with a median of 13 minutes (IQR, 12-15) per electrode placement for time efficiency. There were two occurrences (1.0%) of electrode misplacement and one instance (0.5%) of a postoperative complication, which manifested as a delayed intraparenchymal hemorrhage. Following SEEG investigation, 11 patients proceeded with surgical intervention, resulting in favorable seizure outcomes for nine (81.8%) and complete remission for eight cases (72.7%). Conclusion: Conventional frame-based stereotactic techniques remain a reliable and effective option for bilateral and multiple SEEG electrode placements. While SEEG is a suitable approach for selected patients who are strong candidates for epilepsy surgery, it is important to remain vigilant concerning the potential risks of electrode misplacement and hemorrhagic complications.

2.
Discov Oncol ; 15(1): 268, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971940

RESUMEN

PURPOSE: Oligodendrogliomas (ODGs) are a subtype of diffuse lower-grade gliomas with overall survival of > 10 years. This study aims to analyze long-term outcomes and identify prognostic factors in patients with WHO grade 2 ODG. METHODS: We retrospectively reviewed 138 adult patients diagnosed with 1p/19q co-deleted ODG who underwent surgical resection or biopsy between 1994 and 2021, analyzing clinical data, treatment details, and outcomes. Progression-free survival (PFS) and overall survival (OS) were evaluated using Kaplan-Meier analysis. Univariate and multivariate Cox regression analyses were utilized to identify significant prognostic factors. RESULTS: In the gross total resection (GTR) group, 63 (45.7%) underwent observation and 5 (3.6%) received postoperative treatment; in the non-GTR group, 37 (26.8%) were observed and 33 (23.9%) received postoperative treatment. The median PFS and OS were 6.8 and 18.4 years, respectively. Between adjuvant treatment and observation, there was no significant difference in PFS or OS. However, GTR or STR with less than 10% residual tumor exhibited significantly better PFS and OS compared to PR or biopsy (p = 0.022 and 0.032, respectively). Multivariate analysis revealed that contrast enhancement on MRI was associated with worse PFS (HR = 2.36, p < 0.001) and OS (HR = 5.89, p = 0.001). And the presence of seizures at presentation was associated with improved OS (HR = 0.28, p = 0.006). CONCLUSION: This study underscores favorable long-term outcomes for patients with 1p/19q co-deleted ODG WHO grade 2. Our findings indicate that the EOR plays a crucial role as a significant prognostic factor in enhancing PFS and OS outcomes in WHO grade 2 ODG.

3.
PLoS One ; 19(6): e0299345, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38870176

RESUMEN

INTRODUCTION: Cervical cancer presents a significant global health challenge, disproportionately impacting underserved populations with limited access to healthcare. Early detection and effective management are vital in addressing this public health concern. This study focuses on Glyoxalase-1 (GLO1), an enzyme crucial for methylglyoxal detoxification, in the context of cervical cancer. METHODS: We assessed GLO1 expression in cervical cancer patient samples using immunohistochemistry. In vitro experiments using HeLa cells were conducted to evaluate the impact of GLO1 inhibition on cell viability and migration. Single-cell RNA sequencing (scRNA-seq) and gene set variation analysis were utilized to investigate the role of GLO1 in the metabolism of cervical cancer. Additionally, public microarray data were analyzed to determine GLO1 expression across various stages of cervical cancer. RESULTS: Our analysis included 58 cervical cancer patients, and showed that GLO1 is significantly upregulated in cervical cancer tissues compared to normal cervical tissues, independent of pathological findings and disease stage. In vitro experiments indicated that GLO1 inhibition by S-p-bromobenzylglutathione cyclopentyl diester decreased cell viability and migration in cervical cancer cell lines. Analyses of scRNA-seq data and public gene expression datasets corroborated the overexpression of GLO1 and its involvement in cancer metabolism, particularly glycolysis. An examination of expression data from precancerous lesions revealed a progressive increase in GLO1 expression from normal tissue to invasive cervical cancer. CONCLUSIONS: This study highlights the critical role of GLO1 in the progression of cervical cancer, presenting it as a potential biomarker and therapeutic target. These findings contribute valuable insights towards personalized treatment approaches and augment the ongoing efforts to combat cervical cancer. Further research is necessary to comprehensively explore GLO1's potential in clinical applications.


Asunto(s)
Biomarcadores de Tumor , Lactoilglutatión Liasa , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Femenino , Lactoilglutatión Liasa/metabolismo , Lactoilglutatión Liasa/genética , Lactoilglutatión Liasa/antagonistas & inhibidores , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Células HeLa , Progresión de la Enfermedad , Movimiento Celular , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Persona de Mediana Edad , Supervivencia Celular/efectos de los fármacos , Adulto , Línea Celular Tumoral
4.
World Neurosurg ; 186: e114-e124, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38514036

RESUMEN

OBJECTIVE: Petroclival meningiomas invade Meckel's cave through the porus trigeminus, leading to secondary trigeminal neuralgia. Microsurgery and stereotactic radiosurgery (SRS) are the typical treatment options. This study investigated symptom control, outcomes, and surgical strategies for PC meningioma-induced TN. METHODS: We retrospectively analyzed 28 TN patients with PC meningiomas who underwent microsurgical nerve decompression between January 2021 and February 2023. In all patients undergoing a transpetrosal approach, the porus trigeminus was opened to enable the removal of the entire tumor within Meckel's cave. Clinical outcomes were assessed using the Barrow Neurologic Institute (BNI) pain intensity scale. Risk factors for poor TN outcomes and poor facial numbness were analyzed. RESULTS: Among 28 patients, 21 (75%) underwent the transpetrosal approach, 5 (17.9%) underwent the retrosigmoid approach, and 2 (7.1%) underwent the Dolenc approach. Following microsurgery, 23 patients (82.1%) experienced TN relief without further medication (BNI I or II). TN recurrence occurred in 2 patients (7.1%), and 3 patients (10.7%) did not achieve TN relief. Cavernous sinus invasion was significantly correlated with poor TN outcomes (P = 0.047). A history of previous SRS (P = 0.011) and upper clivus type tumor (P = 0.018) were significantly associated with poor facial numbness. CONCLUSIONS: Microsurgical nerve decompression is effective in improving BNI scores in patients with TN associated with PC meningiomas. Considering the results of our study, the opening of the porus trigeminus can be considered as a suggested procedure in the treatment of PC meningiomas, especially in cases accompanied by TN.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Neuralgia del Trigémino , Humanos , Neuralgia del Trigémino/cirugía , Neuralgia del Trigémino/etiología , Meningioma/cirugía , Meningioma/complicaciones , Femenino , Masculino , Persona de Mediana Edad , Anciano , Neoplasias Meníngeas/cirugía , Neoplasias Meníngeas/complicaciones , Estudios Retrospectivos , Adulto , Nervio Trigémino/cirugía , Microcirugia/métodos , Neoplasias de la Base del Cráneo/cirugía , Neoplasias de la Base del Cráneo/complicaciones , Procedimientos Neuroquirúrgicos/métodos , Radiocirugia/métodos , Descompresión Quirúrgica/métodos , Resultado del Tratamiento
5.
Cell Mol Life Sci ; 81(1): 145, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38498222

RESUMEN

Cisplatin is a chemotherapy drug that causes a plethora of DNA lesions and inhibits DNA transcription and replication, resulting in the induction of apoptosis in cancer cells. However, over time, patients develop resistance to cisplatin due to repeated treatment and thus the treatment efficacy is limited. Therefore, identifying an alternative therapeutic strategy combining cisplatin treatment along with targeting factors that drive cisplatin resistance is needed. CRISPR/Cas9 system-based genome-wide screening for the deubiquitinating enzyme (DUB) subfamily identified USP28 as a potential DUB that governs cisplatin resistance. USP28 regulates the protein level of microtubule-associated serine/threonine kinase 1 (MAST1), a common kinase whose expression is elevated in several cisplatin-resistant cancer cells. The expression level and protein turnover of MAST1 is a major factor driving cisplatin resistance in many cancer types. Here we report that the USP28 interacts and extends the half-life of MAST1 protein by its deubiquitinating activity. The expression pattern of USP28 and MAST1 showed a positive correlation across a panel of tested cancer cell lines and human clinical tissues. Additionally, CRISPR/Cas9-mediated gene knockout of USP28 in A549 and NCI-H1299 cells blocked MAST1-driven cisplatin resistance, resulting in suppressed cell proliferation, colony formation ability, migration and invasion in vitro. Finally, loss of USP28 destabilized MAST1 protein and attenuated tumor growth by sensitizing cells to cisplatin treatment in mouse xenograft model. We envision that targeting the USP28-MAST1 axis along with cisplatin treatment might be an alternative therapeutic strategy to overcome cisplatin resistance in cancer patients.


Asunto(s)
Cisplatino , Neoplasias , Animales , Humanos , Ratones , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos , Proteínas Asociadas a Microtúbulos , Microtúbulos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas Serina-Treonina Quinasas/genética , Ubiquitina Tiolesterasa
6.
Stem Cell Res Ther ; 15(1): 58, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433223

RESUMEN

OBJECTIVES: Currently, no approved stem cell-based therapies for preserving ovarian function during aging. To solve this problem, we developed a long-term treatment for human embryonic stem cell-derived mesenchymal progenitor cells (hESC-MPCs). We investigated whether the cells retained their ability to resist ovarian aging, which leads to delayed reproductive senescence. MATERIALS AND METHODS: In a middle-aged female model undergoing natural aging, we analyzed whether hESC-MPCs benefit the long-term maintenance of reproductive fecundity and ovarian reservoirs and how their transplantation regulates ovarian function. RESULTS: The number of primordial follicles and mice with regular estrous cycles were increased in perimenopausal mice who underwent multiple introductions of hESC-MPCs compared to age-matched controls. The estradiol levels in the hESC-MPCs group were restored to those in the young and adult groups. Embryonic development and live birth rates were higher in the hESC-MPC group than in the control group, suggesting that hESC-MPCs delayed ovarian senescence. In addition to their direct effects on the ovary, multiple-treatments with hESC-MPCs reduced ovarian fibrosis by downregulating inflammation and fibrosis-related genes via the suppression of myeloid-derived suppressor cells (MDSCs) produced in the bone marrow. CONCLUSIONS: Multiple introductions of hESC-MPCs could be a useful approach to prevent female reproductive senescence and that these cells are promising sources for cell therapy to postpone the ovarian aging and retain fecundity in perimenopausal women.


Asunto(s)
Células Madre Embrionarias Humanas , Células Madre Mesenquimatosas , Adulto , Embarazo , Persona de Mediana Edad , Femenino , Humanos , Animales , Ratones , Perimenopausia , Fertilidad , Envejecimiento , Fibrosis
7.
Sci Rep ; 14(1): 4615, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409363

RESUMEN

Pleomorphic xanthoastrocytomas (PXA) are rare, accounting for < 1% of all astrocytomas. Literature on the clinical course and treatment outcomes of PXAs is limited. The study aimed to determine prognosis and treatment strategies for PXAs. Patients who had PXAs surgery between 2000-2021 were retrospectively analyzed for demographics and radiological characteristics. Initial and salvage treatment outcomes were recorded. Overall, 40 and 9 patients had grade 2 and 3 PXAs; their 5-year progression-free survival (PFS) rates were 75.8% and 37.0%, respectively (p = 0.003). Univariate analysis revealed that strong T1 enhancement (p = 0.036), infiltrative tumor margins (p < 0.001), peritumoral edema (p = 0.003), WHO grade (p = 0.005), and gross total resection (p = 0.005) affected the PFS. Multivariate analysis revealed that the WHO grade (p = 0.010) and infiltrative tumor margins (p = 0.008) influenced the PFS. The WHO grade (p = 0.027) and infiltrative tumor margins (p = 0.027) also affected the overall survival (OS). Subgroup analysis for grade 2 PXAs revealed no significant associations between adjuvant radiation therapy and the PFS and OS. This study highlighted the heterogeneous nature of PXAs and its impact on patient prognosis. Infiltrative tumor margins emerged as a key prognostic factor. Our findings have emphasized the prognostic relevance of radiological features and the need for larger studies on comprehensive management.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Humanos , Pronóstico , Estudios Retrospectivos , Neoplasias Encefálicas/patología , Astrocitoma/diagnóstico por imagen , Astrocitoma/terapia , Astrocitoma/patología , Resultado del Tratamiento
8.
STAR Protoc ; 5(1): 102925, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38421862

RESUMEN

Human induced pluripotent stem cell (hiPSC)-derived macrophages provide a valuable tool for disease modeling and drug discovery. Here, we present a protocol to generate functional macrophages from hiPSCs using a feeder-free hematopoietic differentiation technique. We describe steps for preparing hiPSCs, mesodermal differentiation, hematopoietic commitment, and macrophage differentiation and expansion. We then detail assays to characterize their phenotype, polarization, and phagocytic functions. The functional macrophages generated here could be used to generate organoids for disease modeling and drug discovery studies. For complete details on the use and execution of this protocol, please refer to Jeong et al.1 and Heo et al.2.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Diferenciación Celular/genética , Macrófagos
9.
Stereotact Funct Neurosurg ; 102(1): 24-32, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38086347

RESUMEN

INTRODUCTION: Recent advancements in stereotactic neurosurgical techniques have become increasingly reliant on image-based target planning. We devised a case-phantom comparative analysis to evaluate the target registration errors arising during the magnetic resonance imaging (MRI)-computed tomography (CT) image fusion process. METHODS: For subjects whose preoperative MRI and CT images both contained fiducial frame localizers, we investigated discrepancies in target coordinates derived from frame registration based on either MRI or CT. We generated a phantom target through an image fusion process, merging the framed CT images with their corresponding reference MRIs after masking their fiducial indicators. This phantom target was then compared with the original during each instance of target planning. RESULTS: In our investigative study with 26 frame registrations, a systematic error in the y-axis was observed as -0.89 ± 0.42 mm across cases using either conventional CT and/or cone-beam CT (O-arm). For the z-axis, errors varied on a case-by-case basis, recording at +0.64 ± 1.09 mm with a predominant occurrence in those merged with cone-beam CT. Collectively, these errors resulted in an average Euclidean error of 1.33 ± 0.93 mm. CONCLUSION: Our findings suggest that the accuracy of frame-based stereotactic planning is potentially compromised during MRI-CT fusion process. Practitioners should recognize this issue, underscoring a pressing need for strategies and advancements to optimize the process.


Asunto(s)
Cirugía Asistida por Computador , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Imagenología Tridimensional/métodos , Cirugía Asistida por Computador/métodos , Técnicas Estereotáxicas , Imagen por Resonancia Magnética/métodos
10.
Artículo en Inglés | MEDLINE | ID: mdl-37933111

RESUMEN

Objective: Several clinical studies have explored the feasibility and efficacy of radiosurgical treatment for mesial temporal lobe epilepsy, but the long-term safety of this treatment has not been fully characterized. This study aims to report and describe radiation-induced cavernous malformation as a delayed complication of radiosurgery in epilepsy patients. Methods: The series includes 20 patients with mesial temporal lobe epilepsy who underwent Gamma Knife radiosurgery (GKRS). The majority received a prescribed isodose of 24 Gy as an adjuvant treatment after anterior temporal lobectomy. Results: In this series, we identified radiation-induced cavernous malformation in three patients, resulting in a cumulative incidence of 18.4% (95% CI, 6.3 to 47.0%) at an eight-year follow-up. These late sequelae of vascular malformation occurred between 6.9 and 7.6 years after GKRS, manifesting later than other delayed radiation-induced changes, such as radiation necrosis. Neurological symptoms attributed to intracranial hypertension were present in those three cases involving cavernous malformation. Of these, two cases, which initially exhibited an insufficient response to radiosurgery, ultimately demonstrated seizure remission following the successful microsurgical resection of the cavernous malformation. Conclusion: All things considered, the development of radiation-induced cavernous malformation is not uncommon in this population and should be acknowledged as a potential long-term complication. Microsurgical resection of cavernous malformation can be preferentially considered in cases where the initial seizure outcome after GKRS is unsatisfactory.

11.
Biochem Biophys Res Commun ; 682: 27-38, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37801987

RESUMEN

The solute carrier family 35 F2 (SLC35F2) belongs to membrane-bound carrier proteins that are associated with multiple cancers. The main factor that determines cancer progression is the expression level of SLC35F2. Thus, identifying the E3 ligase that controls SLC35F2 protein abundance in cancer cells is critical. Here, we identified ßTrCP1 interacting with and reducing the SLC35F2 protein level. ßTrCP1 signals SLC35F2 protein ubiquitination and reduces SLC35F2 protein half-life. The mRNA expression pattern between ßTrCP1 and SLC35F2 across a panel of cancer cell lines showed a negative correlation. Additionally, the depletion of ßTrCP1 accumulated SLC35F2 protein and promoted SLC35F2-mediated cell growth, migration, invasion, and colony formation ability in HeLa cells. Overall, we demonstrate that ßTrCP1 acts as a tumor suppressor by controlling SLC35F2 protein abundance in cancer cells. The depletion of ßTrCP1 promotes SLC35F2-mediated carcinogenesis. Thus, we envision that ßTrCP1 may be a potential target for cancer therapeutics.


Asunto(s)
Neoplasias , Ubiquitina-Proteína Ligasas , Humanos , Células HeLa , Ubiquitinación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ciclo Celular , Línea Celular Tumoral , Neoplasias/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo
12.
Biochim Biophys Acta Gen Subj ; 1867(11): 130454, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37689217

RESUMEN

BACKGROUND: The solute carrier family 35 F2 (SLC35F2), belongs to membrane-bound carrier proteins that control various physiological functions and are activated in several cancers. However, the molecular mechanism regulating SLC35F2 protein turnover and its implication in cancer progression remains unexplored. Therefore, screening for E3 ligases that promote SLC35F2 protein degradation is essential during cancer progression. METHODS: The immunoprecipitation and Duolink proximity ligation assays (PLA) were used to determine the interaction between APC/CCdh1 and SLC35F2 proteins. A CRISPR/Cas9-mediated knockdown and rescue experiment were used to validate the functional significance of APC/CCdh1 on SLC35F2 protein stabilization. The ubiquitination function of APC/CCdh1 on SLC35F2 protein was validated using in vitro ubiquitination assay and half-life analysis. The role of APC/CCdh1 regulating SLC35F2-mediated tumorigenesis was confirmed by in vitro oncogenic experiments in HeLa cells. RESULTS: Based on the E3 ligase screen and in vitro biochemical experiments, we identified that APC/CCdh1 interacts with and reduces SLC35F2 protein level. APC/CCdh1 promotes SLC35F2 ubiquitination and decreases the half-life of SLC35F2 protein. On the other hand, the CRISPR/Cas9-mediated depletion of APC/CCdh1 increased SLC35F2 protein levels. The mRNA expression analysis revealed a negative correlation between APC/CCdh1 and SLC35F2 across a panel of cancer cell lines tested. Additionally, we demonstrated that depletion in APC/CCdh1 promotes SLC35F2-mediated cell proliferation, colony formation, migration, and invasion in HeLa cells. CONCLUSION: Our study highlights that APC/CCdh1 is a critical regulator of SLC35F2 protein turnover and depletion of APC/CCdh1 promotes SLC35F2-mediated tumorigenesis. Thus, we envision that APC/CCdh1-SLC35F2 axis might be a therapeutic target in cancer.

13.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37631070

RESUMEN

A metastatic brain tumor is the most common type of malignancy in the central nervous system, which is one of the leading causes of death in patients with lung cancer. The purpose of this study is to evaluate the efficacy of a novel treatment for metastatic brain tumors with lung cancer using neural stem cells (NSCs), which encode rabbit carboxylesterase (rCE) and the secretion form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL). rCE and/or sTRAIL were transduced in immortalized human fetal NSCs, HB1.F3. The cytotoxic effects of the therapeutic cells on human lung cancer cells were evaluated in vitro with the ligands and decoy receptor expression for sTRAIL in the presence of CPT-11. Human NSCs encoding rCE (F3.CE and F3.CE.sTRAIL) significantly inhibited the growth of lung cancer cells in the presence of CPT-11 in vitro. Lung cancer cells were inoculated in immune-deficient mice, and therapeutic cells were transplanted systematically through intracardiac arterial injection and then treated with CPT-11. In resting state, DR4 expression in lung cancer cells and DcR1 in NSCs increased to 70% and 90% after CPT-11 addition, respectively. The volumes of the tumors in immune-deficient mice were reduced significantly in mice with F3.CE.sTRAIL transplantation and CPT-11 treatment. The survival was also significantly prolonged with treatment with F3.sTRAIL and F3.CE plus CPT-11 as well as F3.CE.sTRAIL plus CPT-11. NSCs transduced with rCE and sTRAIL genes showed a significant anti-cancer effect on brain metastatic lung cancer in vivo and in vitro, and the effect may be synergistic when rCE/CPT-11 and sTRAIL are combined. This stem-cell-based study using two therapeutic genes of different biological effects can be translatable to clinical application.

14.
Mol Biotechnol ; 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37572221

RESUMEN

p53 is a tumor suppressor gene activated in response to cellular stressors that inhibits cell cycle progression and induces pro-apoptotic signaling. The protein level of p53 is well balanced by the action of several E3 ligases and deubiquitinating enzymes (DUBs). Several DUBs have been reported to negatively regulate and promote p53 degradation in tumors. In this study, we identified USP19 as a negative regulator of p53 protein level. We demonstrate a direct interaction between USP19 and p53 by pull down assay. The overexpression of USP19 promoted ubiquitination of p53 and reduced its protein half-life. We also demonstrate that CRISPR/Cas9-mediated knockout of USP19 in cervical cancer cells elevates p53 protein levels, resulting in reduced colony formation, cell migration, and cell invasion. Overall, our results indicate that USP19 negatively regulates p53 protein levels in cervical cancer progression.

15.
Nat Commun ; 14(1): 3220, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270588

RESUMEN

Progesterone (P4) is required for the preparation of the endometrium for a successful pregnancy. P4 resistance is a leading cause of the pathogenesis of endometrial disorders like endometriosis, often leading to infertility; however, the underlying epigenetic cause remains unclear. Here we demonstrate that CFP1, a regulator of H3K4me3, is required for maintaining epigenetic landscapes of P4-progesterone receptor (PGR) signaling networks in the mouse uterus. Cfp1f/f;Pgr-Cre (Cfp1d/d) mice showed impaired P4 responses, leading to complete failure of embryo implantation. mRNA and chromatin immunoprecipitation sequencing analyses showed that CFP1 regulates uterine mRNA profiles not only in H3K4me3-dependent but also in H3K4me3-independent manners. CFP1 directly regulates important P4 response genes, including Gata2, Sox17, and Ihh, which activate smoothened signaling pathway in the uterus. In a mouse model of endometriosis, Cfp1d/d ectopic lesions showed P4 resistance, which was rescued by a smoothened agonist. In human endometriosis, CFP1 was significantly downregulated, and expression levels between CFP1 and these P4 targets are positively related regardless of PGR levels. In brief, our study provides that CFP1 intervenes in the P4-epigenome-transcriptome networks for uterine receptivity for embryo implantation and the pathogenesis of endometriosis.


Asunto(s)
Endometriosis , Progesterona , Transactivadores , Animales , Femenino , Humanos , Ratones , Embarazo , Implantación del Embrión/genética , Endometriosis/genética , Endometriosis/metabolismo , Endometrio/metabolismo , Epigénesis Genética , Progesterona/farmacología , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , ARN Mensajero/metabolismo , Útero/metabolismo , Transactivadores/genética
16.
J Exp Clin Cancer Res ; 42(1): 121, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37170124

RESUMEN

BACKGROUND: The repressor element-1 silencing transcription factor (REST), a master transcriptional repressor, is essential for maintenance, self-renewal, and differentiation in neuroblastoma. An elevated expression of REST is associated with impaired neuronal differentiation, which results in aggressive neuroblastoma formation. E3 ligases are known to regulate REST protein abundance through the 26 S proteasomal degradation pathway in neuroblastoma. However, deubiquitinating enzymes (DUBs), which counteract the function of E3 ligase-mediated REST protein degradation and their impact on neuroblastoma tumorigenesis have remained unexplored. METHODS: We employed a CRISPR/Cas9 system to perform a genome-wide knockout of ubiquitin-specific proteases (USPs) and used western blot analysis to screen for DUBs that regulate REST protein abundance. The interaction between USP3 and REST was confirmed by immunoprecipitation and Duolink in situ proximity assays. The deubiquitinating effect of USP3 on REST protein degradation, half-life, and neuronal differentiation was validated by immunoprecipitation, in vitro deubiquitination, protein-turnover, and immunostaining assays. The correlation between USP3 and REST expression was assessed using patient neuroblastoma datasets. The USP3 gene knockout in neuroblastoma cells was performed using CRISPR/Cas9, and the clinical relevance of USP3 regulating REST-mediated neuroblastoma tumorigenesis was confirmed by in vitro and in vivo oncogenic experiments. RESULTS: We identified a deubiquitinase USP3 that interacts with, stabilizes, and increases the half-life of REST protein by counteracting its ubiquitination in neuroblastoma. An in silico analysis showed a correlation between USP3 and REST in multiple neuroblastoma cell lines and identified USP3 as a prognostic marker for overall survival in neuroblastoma patients. Silencing of USP3 led to a decreased self-renewal capacity and promoted retinoic acid-induced differentiation in neuroblastoma. A loss of USP3 led to attenuation of REST-mediated neuroblastoma tumorigenesis in a mouse xenograft model. CONCLUSION: The findings of this study indicate that USP3 is a critical factor that blocks neuronal differentiation, which can lead to neuroblastoma. We envision that targeting USP3 in neuroblastoma tumors might provide an effective therapeutic differentiation strategy for improved survival rates of neuroblastoma patients.


Asunto(s)
Neuroblastoma , Factores de Transcripción , Animales , Humanos , Ratones , Diferenciación Celular/genética , Transformación Celular Neoplásica/genética , Sistemas CRISPR-Cas , Neuroblastoma/genética , Neuronas/fisiología , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación
17.
Acta Neurochir (Wien) ; 165(6): 1435-1443, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37115323

RESUMEN

PURPOSE: The aim of this study was to introduce biportal endoscopic extraforaminal lumbar interbody fusion (BE-EFLIF), which involves insertion of a cage through a more lateral side as compared to the conventional corridor of transforaminal lumbar interbody fusion. We described the advantages and surgical steps of 3D-printed porous titanium cage with large footprints insertion through multi-portal approach, and preliminary results of this technique. METHODS: This retrospective study included 12 consecutive patients who underwent BE-EFLIF for symptomatic single-level lumbar degenerative disease. Clinical outcomes, including a visual analog scale (VAS) for back and leg pain and the Oswestry disability index (ODI), were collected at preoperative months 1 and 3, and 6 months postoperatively. In addition, perioperative data and radiographic parameters were analyzed. RESULTS: The mean patient age, follow-up period, operation time, and volume of surgical drainage were 68.3 ± 8.4 years, 7.6 ± 2.8 months, 188.3 ± 42.4 min, 92.5 ± 49.6 mL, respectively. There were no transfusion cases. All patients showed significant improvement in VAS and ODI postoperatively, and these were maintained for 6 months after surgery (P < 0.001). The anterior and posterior disc heights significantly increased after surgery (P < 0.001), and the cage was ideally positioned in all patients. There were no incidences of early cage subsidence or other complications. CONCLUSIONS: BE-EFLIF using a 3D-printed porous titanium cage with large footprints is a feasible option for minimally invasive lumbar interbody fusion. This technique is expected to reduce the risk of cage subsidence and improve the fusion rate.


Asunto(s)
Fusión Vertebral , Titanio , Humanos , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Resultado del Tratamiento , Porosidad , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Fusión Vertebral/métodos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Impresión Tridimensional
18.
COPD ; 20(1): 109-118, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36882376

RESUMEN

Aberrant communication in alveolar epithelium is a major feature of inflammatory response for the airway remodeling leading to chronic obstructive pulmonary disease (COPD). In this study, we investigated the effect of protein transduction domains (PTD) conjugated Basic Fibroblast Growth Factor (FGF2) (PTD-FGF2) in response to cigarette smoke extract (CSE) in MLE-12 cells and porcine pancreatic elastase (PPE)-induced emphysematous mice. When PPE-induced mice were intraperitoneally treated with 0.1-0.5 mg/kg PTD-FGF2 or FGF2, the linear intercept, infiltration of inflammatory cells into alveoli and pro-inflammatory cytokines were significantly decreased. In western blot analysis, phosphorylated protein levels of c-Jun N-terminal Kinase 1/2 (JNK1/2), extracellular signal-regulated kinase (ERK1/2) and p38 mitogen-activated protein kinases (MAPK) were decreased in PPE-induced mice treated PTD-FGF2. In MLE-12 cells, PTD-FGF2 treatment decreased reactive oxygen species (ROS) production and further decreased Interleukin-6 (IL-6) and IL-1b cytokines in response to CSE. In addition, phosphorylated protein levels of ERK1/2, JNK1/2 and p38 MAPK were reduced. We next determined microRNA expression in the isolated exosomes of MLE-12 cells. In reverse transcription-polymerase chain reaction (RT-PCR) analysis, level of let-7c miRNA was significantly increased while levels of miR-9 and miR-155 were decreased in response to CSE. These data suggest that PTD-FGF2 treatment plays a protective role in regulation of let-7c, miR-9 and miR-155 miRNA expressions and MAPK signaling pathways in CSE-induced MLE-12 cells and PPE-induced emphysematous mice.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Animales , Ratones , Porcinos , Elastasa Pancreática , Factor 2 de Crecimiento de Fibroblastos/genética , Células Epiteliales Alveolares , Enfisema Pulmonar/inducido químicamente , Citocinas/genética
19.
Antioxidants (Basel) ; 11(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36552670

RESUMEN

Idiopathic Pulmonary fibrosis (IPF), a chronic interstitial lung disease, has pulmonary manifestations clinically characterized by collagen deposition, epithelial cell injury, and a decline in lung function. L-carnosine, a dipeptide consisting of ß-alanine and L-histidine, has demonstrated a therapeutic effect on various diseases because of its pivotal function. Despite the effect of L-carnosine in experimental IPF mice, its anti-oxidative effect and associated intercellular pathway, particularly alveolar epithelial cells, remain unknown. Therefore, we demonstrated the anti-fibrotic and anti-inflammatory effects of L-carnosine via Reactive oxygen species (ROS) regulation in bleomycin (BLM)-induced IPF mice. The mice were intratracheally injected with BLM (3 mg/kg) and L-carnosine (150 mg/kg) was orally administrated for 2 weeks. BLM exposure increased the protein level of Nox2, Nox4, p53, and Caspase-3, whereas L-carnosine treatment suppressed the protein level of Nox2, Nox4, p53, and Caspase-3 cleavage in mice. In addition, the total SOD activity and mRNA level of Sod2, catalase, and Nqo1 increased in mice treated with L-carnosine. At the cellular level, a human fibroblast (MRC-5) and mouse alveolar epithelial cell (MLE-12) were exposed to TGFß1 following L-carnosine treatment to induce fibrogenesis. Moreover, MLE-12 cells were exposed to cigarette smoke extract (CSE). Consequently, L-carnosine treatment ameliorated fibrogenesis in fibroblasts and alveolar epithelial cells, and inflammation induced by ROS and CSE exposure was ameliorated. These results were associated with the inhibition of the NFκB pathway. Collectively, our data indicate that L-carnosine induces anti-inflammatory and anti-fibrotic effects on alveolar epithelial cells against the pathogenesis of IPF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA