Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Exp Mol Med ; 53(1): 91-102, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33420414

RESUMEN

Breast cancer (BC) is the most prevalent malignant neoplasm among women and is the fifth most common cause of cancer-associated death worldwide. Acquired chemoresistance driven by genetic and epigenetic alterations is a significant clinical challenge in treating BC. However, the mechanism of BC cell resistance to adriamycin (ADR) remains to be elucidated. In this study, we identified the methyltransferase-like 3/microRNA-221-3p/homeodomain-interacting protein kinase 2/Che-1 (METTL3/miR-221-3p/HIPK2/Che-1) axis as a novel signaling event that may be responsible for resistance of BC cells to ADR. A dual-luciferase reporter gene assay was employed to test the presence of miR-221-3p binding sites in the 3'UTR of HIPK2. Drug resistance was evaluated by immunoblotting multidrug resistance protein 1 (MDR1) and breast cancer resistance protein (BCRP). Cultured ADR-resistant MCF-7 cells were assayed for their half maximal inhibitory concentration (IC50) values and apoptosis using an MTT assay and Annexin V-FITC/PI-labeled flow cytometry, and the cells were then xenografted into nude mice. METTL3 knockdown was shown to reduce the expression of miR-221-3p by reducing pri-miR-221-3p m6A mRNA methylation, thereby reducing the IC50 value of ADR-resistant MCF-7 cells, reducing the expression of MDR1 and BCRP, and inducing apoptosis. Mechanistically, miR-221-3p was demonstrated to negatively regulate HIPK2 and upregulate its direct target Che-1, thus leading to enhanced drug resistance in ADR-resistant MCF-7 cells. In vitro results were reproduced in nude mice xenografted with ADR-resistant MCF-7 cells. Our work elucidates an epigenetic mechanism of acquired chemoresistance in BC, in support of the METTL3/miR-221-3p/HIPK2/Che-1 axis as a therapeutic target for the improvement of chemotherapy.


Asunto(s)
Adenosina/análogos & derivados , Resistencia a Antineoplásicos , Neoplasias Mamarias Experimentales/metabolismo , Metiltransferasas/metabolismo , MicroARNs/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Adenosina/metabolismo , Animales , Antibióticos Antineoplásicos/toxicidad , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Doxorrubicina/toxicidad , Femenino , Células HEK293 , Humanos , Células MCF-7 , Neoplasias Mamarias Experimentales/genética , Ratones , Ratones Endogámicos BALB C , MicroARNs/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
2.
Front Oncol ; 10: 441, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32426266

RESUMEN

Drug resistance in breast cancer (BC) cells continues to be a stern obstacle hindering BC treatment. Adriamycin (ADR) is a frequently employed chemotherapy agent used to treat BC. The exosomal transfer of microRNAs (miRNAs) has been reported to enhance the drug-resistance of BC cells. Herein, we first sought to elucidate the possible role of the exosomal transfer of miR-221-3p in the drug resistance of MCF-7 cells to ADR. Differentially expressed genes (DEGs) were initially screened through microarray analysis in BC drug resistance-related datasets. Next, the expression of miR-221-3p and phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) was quantified in ADR-resistant MCF-7 (MCF-7/ADR) and ADR-sensitive MCF-7 (MCF-7/S) cell lines, after which exosomes were separated and identified in each cell line. Target relationship between miR-221-3p and PIK3R1 was validated by a dual-luciferase reporter assay. Next, the expression of miR-221-3p and PIK3R1 was altered to clarify their effects on the resistance of MCF-7 cells to ADR in vitro and in vivo. PIK3R1 was identified as a BC drug resistance-related DEG, with the regulatory miR-221-3p subsequently obtained. Moreover, the MCF-7/ADR cells exhibited a low expression of PIK3R1 and a high expression of miR-221-3p. Notably, PIK3R1 was identified as a target gene of miR-221-3p. The overexpression of miR-221-3p in MCF-7/ADR cell-derived exosomes promoted ADR resistance in MCF-7/S cells via the PI3K/AKT signaling pathway. The in vitro results were reproducible in in vivo assays. Taken together, drug-resistant BC cell-derived exosomal miR-221-3p can promote the resistance of BC cells to ADR by targeting PIK3R1 via the PI3K/AKT signaling pathway in vitro and in vivo. These findings provide encouraging insights and provide perspectives for further investigation into the BC drug resistance mechanism.

3.
Mol Immunol ; 48(12-13): 1573-7, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21481941

RESUMEN

HBV replicates noncytopathically in hepatocytes, but HBV or proteins encoded by HBV genome could induce cytokines, chemokines expression by hepatocytes. Moreover, liver damage in patients with HBV infection is immune-mediated and cytokines play important roles in immune-mediated liver damage after HBV infection. Interleukin-32 (IL-32) is a proinflammatory cytokine and plays a critical role in inflammation. However, the role of HBV in IL-32 expression remains unclear. In the present study, we demonstrate that hepatitis B virus protein X (HBx) increases IL-32 expression through the promoter of IL-32 at positions from -746 to +25 and in a dose-dependent manner. Furthermore, we demonstrate that increase of NF-κB subunits p65 and p50 in Huh7 cells also augments IL-32 expression, and the NF-κB inhibitor blocks the effect of HBx on IL-32 induction. These results indicate that NF-κB activation is required for HBx-induced IL-32 expression. In conclusion, IL-32 is induced by HBx in Huh7 cells. Our results suggest that IL-32 might play an important role in inflammatory response after HBV infection.


Asunto(s)
Virus de la Hepatitis B/metabolismo , Hepatocitos/inmunología , Interleucinas/genética , FN-kappa B/metabolismo , Transactivadores/metabolismo , Western Blotting , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Regulación de la Expresión Génica , Hepatitis B/inmunología , Hepatocitos/metabolismo , Humanos , Interleucinas/biosíntesis , Interleucinas/inmunología , Plásmidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Proteínas Reguladoras y Accesorias Virales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA