Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Am Soc Mass Spectrom ; 33(10): 1816-1824, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36129840

RESUMEN

Gas-phase addition of dioxygen to certain ions is a well-known phenomenon in mass spectrometry. For this reaction to occur, the presence of a distonic radical site on the precursor ion is thought to be a prerequisite. Herein, we report that oxygen adduct formation can take place also with deprotonated hydroquinone, which in fact is an even-electron species without a radical site. When the product-ion spectrum of the m/z 109 ion, generated by electrospray ionization from a solution of hydroquinone in acetonitrile, was recorded under ion-mobility conditions, a new peak was observed at m/z 141. However, an analogous peak was not visible in the spectrum acquired under nonmobility conditions (i.e., without any gas introduced to the mobility cell). Presumably, traces of oxygen present in the collision gas instigate an ion-molecule reaction to produce an adduct of m/z 141, which upon activation results in CO and H2O loss to form a product ion of m/z 95. Isotope-labeling studies confirmed that one of the hydrogen atoms from the hydroxy group and another from the aromatic ring contribute to the water loss instigated from the m/z 141 adduct. Furthermore, computational methods indicated the three-dimensional structure of the ground-state deprotonated hydroquinone to be distinctly different from those of its 1,2- and 1,3-isomers. Calculations predicted that all atoms in the two m/z 109 ions generated from catechol and resorcinol lie on one plane. In contrast, the structure of the m/z 109 ion from hydroquinone was significantly different. Computations predicted that the hydrogen atom on the intact hydroxyl group of deprotonated hydroquinone protrudes out of plane from rest of the atoms. Consequently, the exposed OH group can interact with an incoming dioxygen molecule. Computations conducted at the CAM-B3LYP/6-311++g(2d,2p) level of theory detected a minimum energy crossing point (MECP) at -4.3 kJ mol-1 below the separated O2 + deprotonated hydroquinone triplet threshold. In contrast, similar calculations conducted for catechol and resorcinol yielded MECPs of +116.9 and +69.1 kJ mol-1, respectively, above the associated triplet thresholds. These results indicated that the curve crossing required to form singlet products upon reaction with triplet O2 is favorable in the case of hydroquinone and unfavorable in the cases of catechol and resorcinol. In practical terms, the selective oxygen addition appears to be a diagnostically useful reaction to differentiate hydroquinone from its ring isomers.


Asunto(s)
Hidroquinonas , Oxígeno , Acetonitrilos , Catecoles , Hidrógeno , Iones/química , Isótopos , Espectrometría de Masas , Oxígeno/química , Resorcinoles , Agua/química
2.
J Am Soc Mass Spectrom ; 32(4): 956-968, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33733774

RESUMEN

The presence of solvent vapor in a differential mobility spectrometry (DMS) cell creates a microsolvating environment that can mitigate complications associated with field-induced heating. In the case of peptides, the microsolvation of protonation sites results in a stabilization of charge density through localized solvent clustering, sheltering the ion from collisional activation. Seeding the DMS carrier gas (N2) with a solvent vapor prevented nearly all field-induced fragmentation of the protonated peptides GGG, AAA, and the Lys-rich Polybia-MP1 (IDWKKLLDAAKQIL-NH2). Modeling the microsolvation propensity of protonated n-propylamine [PrNH3]+, a mimic of the Lys side chain and N-terminus, with common gas-phase modifiers (H2O, MeOH, EtOH, iPrOH, acetone, and MeCN) confirms that all solvent molecules form stable clusters at the site of protonation. Moreover, modeling populations of microsolvated clusters indicates that species containing protonated amine moieties exist as microsolvated species with one to six solvent ligands at all effective ion temperatures (Teff) accessible during a DMS experiment (ca. 375-600 K). Calculated Teff of protonated GGG, AAA, and Polybia-MPI using a modified two-temperature theory approach were up to 86 K cooler in DMS environments seeded with solvent vapor compared to pure N2 environments. Stabilizing effects were largely driven by an increase in the ion's apparent collision cross section and by evaporative cooling processes induced by the dynamic evaporation/condensation cycles incurred in the presence of an oscillating electric separation field. When the microsolvating partner was a protic solvent, abstraction of a proton from [MP1 + 3H]3+ to yield [MP1 + 2H]2+ was observed. This result was attributed to the proclivity of protic solvents to form hydrogen-bond networks with enhanced gas-phase basicity. Collectively, microsolvation provides analytes with a solvent "air bag," whereby charge reduction and microsolvation-induced stabilization were shown to shelter peptides from the fragmentation induced by field heating and may play a role in preserving native-like ion configurations.


Asunto(s)
Espectrometría de Movilidad Iónica/métodos , Péptidos/química , Secuencia de Aminoácidos , Iones , Simulación de Dinámica Molecular , Soluciones , Solventes/química , Electricidad Estática , Temperatura
3.
Sci Rep ; 10(1): 6724, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317684

RESUMEN

An in vivo direct-immersion SPME sampling coupled to comprehensive two-dimensional gas chromatography - time-of-flight mass spectrometry (GCxGC-ToFMS) was employed to capture real-time changes in the metabolome of 'Honeycrisp' apples during ripening on the tree. This novel sampling approach was successful in acquiring a broad metabolic fingerprint, capturing unique metabolites and detecting changes in metabolic profiles associated with fruit maturation. Several metabolites and chemical classes, including volatile esters, phenylpropanoid metabolites, 1-octen-3-ol, hexanal, and (2E,4E)-2,4-hexadienal were found to be up-regulated in response to fruit maturation. For the first time, Amaryllidaceae alkaloids, metabolites with important biological activities, including anti-cancer, anti-viral, anti-parasitic, and acetylcholinesterase (AChE) inhibitory activity, were detected in apples. Considering the elimination of oxidative degradation mechanisms that adversely impact the representativeness of metabolome obtained ex vivo, and further evidence that lipoxygenase (LOX) pathway contributes to volatile production in intact fruit, in vivo DI-SPME represents an attractive approach for global plant metabolite studies.


Asunto(s)
Frutas/metabolismo , Malus/metabolismo , Metaboloma , Microextracción en Fase Sólida/métodos , Análisis Discriminante , Cromatografía de Gases y Espectrometría de Masas , Análisis de los Mínimos Cuadrados , Malus/crecimiento & desarrollo
4.
J Am Soc Mass Spectrom ; 31(2): 405-410, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32031386

RESUMEN

We describe the modification of a commercially available tandem differential mobility mass spectrometer (DMS) that has been retrofitted to facilitate photodissociation (PD) of differential mobility-separated, mass-selected molecular ions. We first show that a mixture of protonated quinoline/isoquinoline (QH+/iQH+) can be separated using differential mobility spectrometry. Efficient separation is facilitated by addition of methanol to the DMS environment and increased residence time within the DMS. In action spectroscopy experiments, we gate each isomer using appropriate DMS settings, trap the ions in the third quadrupole of a triple quadrupole mass spectrometer, and irradiate them with tunable light from an optical parametric oscillator (OPO). The resulting mass spectra are recorded as the OPO wavelength is scanned, giving PD action spectra. We compare our PD spectra with previously recorded spectra for the same species and show that our instrument reproduces previous works faithfully.

5.
J Phys Chem Lett ; 8(1): 109-113, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27966976

RESUMEN

Clusters of all-cis 1,2,3,4,5,6-hexafluorocyclohexane and the dodecafluorododecaboron dianion, [C6F6H6]n[B12F12]2- (n = 0-4), are investigated in a combined experimental and computational study. DFT calculations and IRMPD spectra in the region of 800-2000 cm-1 indicate that C6H6F6 binds to open trigonal faces of B12F122- via a three-point interlocking binding motif. Calculated binding interactions reveal substantial contributions from C-H···F hydrogen bonding and binding energies that are among the strongest observed for a neutral-anion system.

6.
J Am Chem Soc ; 138(24): 7460-3, 2016 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-27149387

RESUMEN

Experiments have been carried out in which electrospray ionization has been used to generate ionic complexes of all-cis 1,2,3,4,5,6 hexafluorocyclohexane. These complexes were subsequently mass isolated in a quadrupole ion trap mass spectrometer and then irradiated by the tunable infrared output of a free electron laser in the 800-1600 cm(-1) range. From the frequency dependence of the fragmentation of the complexes, vibrational signatures of the complexes were obtained. Computational work carried out in parallel reveals that the complexes formed are very strongly bound and are among the most strongly bound complexes of Na(+) and Cl(-) ever observed with molecular species. The dipole moment calculated for the heaxafluorocyclohexane is very large (∼7 D), and it appears that the bonding in each of the complexes has a significant electrostatic contribution.

7.
J Am Soc Mass Spectrom ; 27(7): 1277-84, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27094827

RESUMEN

In this study, we report on the use of differential mobility spectrometry (DMS) as a tool for studying tautomeric species, allowing a more in-depth interrogation of these elusive isomers using ion/molecule reactions and tandem mass spectrometry. As an example, we revisit a case study in which gas-phase hydrogen-deuterium exchange (HDX)-a probe of ion structure in mass spectrometry-actually altered analyte ion structure by tautomerization. For the N- and O-protonated tautomers of 4-aminobenzoic acid, when separated using DMS and subjected to subsequent HDX with trace levels of D2O, the anticipated difference between the exchange rates of the two tautomers is observed. However, when using higher levels of D2O or a more basic reagent, equivalent and almost complete exchange of all labile protons is observed. This second observation is a result of the interconversion of the N-protonated tautomer to the O-protonated form during HDX. We can monitor this transformation experimentally, with support from detailed molecular dynamics and electronic structure calculations. In fact, calculations suggest the onset of bulk solution phase properties for 4-aminobenzoic acid upon solvation with eight CH3OH molecules. These findings also underscore the need for choosing HDX reagents and conditions judiciously when separating interconvertible isomers using DMS. Graphical Abstract ᅟ.

8.
J Phys Chem A ; 117(41): 10714-8, 2013 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-24050520

RESUMEN

The structures and dissociation pathways of the proton-bound 3-cyanophenylalanine·trimethylamine cluster have been studied using a combination of infrared multiple photon dissociation (IRMPD) spectroscopy and density functional theory calculations. Three isomer motifs are identified: charge-solvated, zwitterionic, and trimethylamine (TMA)-bridged. While the TMA-bridged structures fragment to yield protonated TMA (channel 1) and protonated 3-cyanophenylalanine (channel 2), charge-solvated species exclusively fragment via channel 1 and zwitterionic species exclusively fragment via channel 2. Mechanisms are proposed.


Asunto(s)
Alanina/análogos & derivados , Gases/química , Metilaminas/química , Nitrilos/química , Protones , Alanina/química , Simulación por Computador , Rayos Infrarrojos , Iones , Isomerismo , Modelos Moleculares , Transición de Fase
9.
J Phys Chem A ; 115(12): 2489-97, 2011 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-21391545

RESUMEN

Far- and mid-infrared multiple photon dissociation spectroscopy has been employed to study both the structure and surface reactivity of isolated cationic rhodium clusters with surface-adsorbed nitrous oxide, Rh(n)N(2)O(+) (n = 4-8). Comparison of experimental spectra recorded using the argon atom tagging method with those calculated using density functional theory (DFT) reveals that the nitrous oxide is molecularly bound on the rhodium cluster via the terminal N-atom. Binding is thought to occur exclusively on atop sites with the rhodium clusters adopting close-packed structures. In related, but conceptually different experiments, infrared pumping of the vibrational modes corresponding with the normal modes of the adsorbed N(2)O has been observed to result in the decomposition of the N(2)O moiety and the production of oxide clusters. This cluster surface chemistry is observed for all cluster sizes studied except for n = 5. Plausible N(2)O decomposition mechanisms are given based on DFT calculations using exchange-correlation functionals. Similar experiments pumping the Rh-O stretch in Rh(n)ON(2)O(+) complexes, on which the same chemistry is observed, confirm the thermal nature of this reaction.

10.
J Chem Phys ; 132(21): 214303, 2010 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-20528018

RESUMEN

The ultraviolet photodissociation dynamics of the gold-rare gas atom van der Waals complexes (Au-RG, RG = Ar, Kr, and Xe) have been studied by velocity map imaging. Photofragmentation of Au-Ar and Au-Kr at several wavelengths permits extrapolation to zero of the total kinetic energy release (TKER) spectra as monitored in the Au((2)P(3/2)(o)[5d(10)6p]) fragment channel, facilitating the determination of ground state dissociation energies of D(0)(")(Au-Ar) = 149+/-13 cm(-1) and D(0)(")(Au-Kr) = 240+/-19 cm(-1), respectively. In the same spectral region, transitions to vibrational levels of an Omega(') = 1/2 state of the Au-Xe complex result in predissociation to the lower Au((2)P(1/2)(o)[5d(10)6p])+Xe((1)S(0)[5p(6)]) fragment channel for which TKER extrapolation yields a value of D(0)(")(Au-Xe) = 636+/-27 cm(-1). Asymmetric line shapes for transitions to the v(') = 14 level of this state indicate coupling to the Au((2)P(3/2)(o)[5d(10)6p])+Xe((1)S(0)[5p(6)]) continuum, which allows us to refine this value to D(0)(")(Au-Xe) = 607+/-5 cm(-1). The dissociation dynamics of this vibrational level have been studied at the level of individual isotopologues by fitting the observed excitation spectra to Fano profiles. These fits reveal a remarkable variation in the predissociation dynamics for different Au-Xe isotopologues. For Au-Ar and Au-Xe, the determined ground state dissociation energies are in good agreement with recent theoretical calculations; the agreement of the Au-Kr value with theory is less satisfactory.

11.
J Chem Phys ; 127(6): 064301, 2007 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-17705590

RESUMEN

The laser-induced photodissociation of formaldehyde in the wavelength range 309

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA