Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant J ; 119(3): 1508-1525, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38923649

RESUMEN

Legumes have evolved a nitrogen-fixing symbiotic interaction with rhizobia, and this association helps them to cope with the limited nitrogen conditions in soil. The compatible interaction between the host plant and rhizobia leads to the formation of root nodules, wherein internalization and transition of rhizobia into their symbiotic form, termed bacteroids, occur. Rhizobia in the nodules of the Inverted Repeat-Lacking Clade legumes, including Medicago truncatula, undergo terminal differentiation, resulting in elongated and endoreduplicated bacteroids. This transition of endocytosed rhizobia is mediated by a large gene family of host-produced nodule-specific cysteine-rich (NCR) peptides in M. truncatula. Few NCRs have been recently found to be essential for complete differentiation and persistence of bacteroids. Here, we show that a M. truncatula symbiotic mutant FN9285, defective in the complete transition of rhizobia, is deficient in a cluster of NCR genes. More specifically, we show that the loss of the duplicated genes NCR086 and NCR314 in the A17 genotype, found in a single copy in Medicago littoralis R108, is responsible for the ineffective symbiotic phenotype of FN9285. The NCR086 and NCR314 gene pair encodes the same mature peptide but their transcriptional activity varies considerably. Nevertheless, both genes can restore the effective symbiosis in FN9285 indicating that their complementation ability does not depend on the strength of their expression activity. The identification of the NCR086/NCR314 peptide, essential for complete bacteroid differentiation, has extended the list of peptides, from a gene family of several hundred members, that are essential for effective nitrogen-fixing symbiosis in M. truncatula.


Asunto(s)
Medicago truncatula , Familia de Multigenes , Proteínas de Plantas , Nódulos de las Raíces de las Plantas , Simbiosis , Medicago truncatula/microbiología , Medicago truncatula/genética , Medicago truncatula/fisiología , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/genética , Simbiosis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Rhizobium/fisiología , Rhizobium/genética , Fijación del Nitrógeno/genética , Péptidos/metabolismo , Péptidos/genética , Sinorhizobium meliloti/fisiología , Sinorhizobium meliloti/genética , Cisteína/metabolismo
2.
Sci Rep ; 13(1): 20676, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001333

RESUMEN

The host-produced nodule specific cysteine-rich (NCR) peptides control the terminal differentiation of endosymbiotic rhizobia in the nodules of IRLC legumes. Although the Medicago truncatula genome encodes about 700 NCR peptides, only few of them have been proven to be crucial for nitrogen-fixing symbiosis. In this study, we applied the CRISPR/Cas9 gene editing technology to generate knockout mutants of NCR genes for which no genetic or functional data were previously available. We have developed a workflow to analyse the mutation and the symbiotic phenotype of individual nodules formed on Agrobacterium rhizogenes-mediated transgenic hairy roots. The selected NCR genes were successfully edited by the CRISPR/Cas9 system and nodules formed on knockout hairy roots showed wild type phenotype indicating that peptides NCR068, NCR089, NCR128 and NCR161 are not essential for symbiosis between M. truncatula Jemalong and Sinorhizobium medicae WSM419. We regenerated stable mutants edited for the NCR068 from hairy roots obtained by A. rhizogenes-mediated transformation. The analysis of the symbiotic phenotype of stable ncr068 mutants showed that peptide NCR068 is not required for symbiosis with S. meliloti strains 2011 and FSM-MA either. Our study reports that gene editing can help to elicit the role of certain NCRs in symbiotic nitrogen fixation.


Asunto(s)
Medicago truncatula , Sinorhizobium meliloti , Medicago truncatula/metabolismo , Cisteína/metabolismo , Sistemas CRISPR-Cas/genética , Mutagénesis , Péptidos/metabolismo , Sinorhizobium meliloti/genética , Simbiosis/genética , Fijación del Nitrógeno/genética , Nódulos de las Raíces de las Plantas/microbiología
3.
New Phytol ; 239(5): 1974-1988, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37381081

RESUMEN

In the nodules of IRLC legumes, including Medicago truncatula, nitrogen-fixing rhizobia undergo terminal differentiation resulting in elongated and endoreduplicated bacteroids specialized for nitrogen fixation. This irreversible transition of rhizobia is mediated by host produced nodule-specific cysteine-rich (NCR) peptides, of which c. 700 are encoded in the M. truncatula genome but only few of them have been proved to be essential for nitrogen fixation. We carried out the characterization of the nodulation phenotype of three ineffective nitrogen-fixing M. truncatula mutants using confocal and electron microscopy, monitored the expression of defence and senescence-related marker genes, and analysed the bacteroid differentiation with flow cytometry. Genetic mapping combined with microarray- or transcriptome-based cloning was used to identify the impaired genes. Mtsym19 and Mtsym20 mutants are defective in the same peptide NCR-new35 and the lack of NCR343 is responsible for the ineffective symbiosis of NF-FN9363. We found that the expression of NCR-new35 is significantly lower and limited to the transition zone of the nodule compared with other crucial NCRs. The fluorescent protein-tagged version of NCR343 and NCR-new35 localized to the symbiotic compartment. Our discovery added two additional members to the group of NCR genes essential for nitrogen-fixing symbiosis in M. truncatula.


Asunto(s)
Medicago truncatula , Rhizobium , Medicago truncatula/genética , Medicago truncatula/metabolismo , Cisteína/metabolismo , Nitrógeno/metabolismo , Péptidos/metabolismo , Fijación del Nitrógeno , Simbiosis , Nódulos de las Raíces de las Plantas/metabolismo
4.
New Phytol ; 228(2): 651-666, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32521047

RESUMEN

The symbiotic relationship between legumes and rhizobium bacteria in root nodules has a high demand for iron, and questions remain regarding which transporters are involved. Here, we characterize two nodule-specific Vacuolar iron Transporter-Like (VTL) proteins in Medicago truncatula. Localization of fluorescent fusion proteins and mutant studies were carried out to correlate with existing RNA-seq data showing differential expression of VTL4 and VTL8 during early and late infection, respectively. The vtl4 insertion lines showed decreased nitrogen fixation capacity associated with more immature nodules and less elongated bacteroids. A mutant line lacking the tandemly-arranged VTL4-VTL8 genes, named 13U, was unable to develop functional nodules and failed to fix nitrogen, which was almost fully restored by expression of VTL8 alone. Using a newly developed lux reporter to monitor iron status of the bacteroids, a moderate decrease in luminescence signal was observed in vtl4 mutant nodules and a strong decrease in 13U nodules. Iron transport capability of VTL4 and VTL8 was shown by yeast complementation. These data indicate that VTL8, the closest homologue of SEN1 in Lotus japonicus, is the main route for delivering iron to symbiotic rhizobia. We propose that a failure in iron protein maturation leads to early senescence of the bacteroids.


Asunto(s)
Medicago truncatula , Hierro , Medicago truncatula/genética , Medicago truncatula/metabolismo , Fijación del Nitrógeno , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis
5.
Plant Physiol ; 182(2): 919-932, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31818906

RESUMEN

The ErbB-3 BINDING PROTEIN 1 (EBP1) drives growth, but the mechanism of how it acts in plants is little understood. Here, we show that EBP1 expression and protein abundance in Arabidopsis (Arabidopsis thaliana) are predominantly confined to meristematic cells and are induced by sucrose and partially dependent on TARGET OF RAPAMYCIN (TOR) kinase activity. Consistent with being downstream of TOR, silencing of EBP1 restrains, while overexpression promotes, root growth, mostly under sucrose-limiting conditions. Inducible overexpression of RETINOBLASTOMA RELATED (RBR), a sugar-dependent transcriptional repressor of cell proliferation, depletes meristematic activity and causes precocious differentiation, which is attenuated by EBP1. To understand the molecular mechanism, we searched for EBP1- and RBR-interacting proteins by affinity purification and mass spectrometry. In line with the double-stranded RNA-binding activity of EBP1 in human (Homo sapiens) cells, the overwhelming majority of EBP1 interactors are part of ribonucleoprotein complexes regulating many aspects of protein synthesis, including ribosome biogenesis and mRNA translation. We confirmed that EBP1 associates with ribosomes and that EBP1 silencing hinders ribosomal RNA processing. We revealed that RBR also interacts with a set of EBP1-associated nucleolar proteins as well as factors that function in protein translation. This suggests EBP1 and RBR act antagonistically on common processes that determine the capacity for translation to tune meristematic activity in relation to available resources.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Meristema/metabolismo , Raíces de Plantas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Diferenciación Celular/genética , Cromatografía de Afinidad , Espectrometría de Masas , Meristema/genética , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Raíces de Plantas/genética , Unión Proteica , Biosíntesis de Proteínas/genética , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Ribosomas/metabolismo , Sacarosa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Plant Physiol ; 182(1): 518-533, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31694902

RESUMEN

Cell cycle entry and quiescence are regulated by the E2F transcription factors in association with RETINOBLASTOMA-RELATED (RBR). E2FB is considered to be a transcriptional activator of cell cycle genes, but its function during development remains poorly understood. Here, by studying E2FB-RBR interaction, E2F target gene expression, and epidermal cell number and shape in e2fb mutant and overexpression lines during leaf development in Arabidopsis (Arabidopsis thaliana), we show that E2FB in association with RBR plays a role in the inhibition of cell proliferation to establish quiescence. In young leaves, both RBR and E2FB are abundant and form a repressor complex that is reinforced by an autoregulatory loop. Increased E2FB levels, either by expression driven by its own promoter or ectopically together with DIMERIZATION PARTNER A, further elevate the amount of this repressor complex, leading to reduced leaf cell number. Cell overproliferation in e2fb mutants and in plants overexpressing a truncated form of E2FB lacking the RBR binding domain strongly suggested that RBR repression specifically acts through E2FB. The increased number of small cells below the guard cells and of fully developed stomata indicated that meristemoids preferentially hyperproliferate. As leaf development progresses and cells differentiate, the amount of RBR and E2FB gradually declined. At this stage, elevation of E2FB level can overcome RBR repression, leading to reactivation of cell division in pavement cells. In summary, E2FB in association with RBR is central to regulating cell proliferation during organ development to determine final leaf cell number.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción E2F/metabolismo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción E2F/genética , Regulación de la Expresión Génica de las Plantas/genética , Mutación/genética , Hojas de la Planta/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética
7.
EMBO J ; 36(9): 1261-1278, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28320736

RESUMEN

The rapidly proliferating cells in plant meristems must be protected from genome damage. Here, we show that the regulatory role of the Arabidopsis RETINOBLASTOMA RELATED (RBR) in cell proliferation can be separated from a novel function in safeguarding genome integrity. Upon DNA damage, RBR and its binding partner E2FA are recruited to heterochromatic γH2AX-labelled DNA damage foci in an ATM- and ATR-dependent manner. These γH2AX-labelled DNA lesions are more dispersedly occupied by the conserved repair protein, AtBRCA1, which can also co-localise with RBR foci. RBR and AtBRCA1 physically interact in vitro and in planta Genetic interaction between the RBR-silenced amiRBR and Atbrca1 mutants suggests that RBR and AtBRCA1 may function together in maintaining genome integrity. Together with E2FA, RBR is directly involved in the transcriptional DNA damage response as well as in the cell death pathway that is independent of SOG1, the plant functional analogue of p53. Thus, plant homologs and analogues of major mammalian tumour suppressor proteins form a regulatory network that coordinates cell proliferation with cell and genome integrity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Puntos de Control del Ciclo Celular , Daño del ADN , Reparación del ADN , Factores de Transcripción E2F/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ADN de Plantas/metabolismo
8.
Proc Natl Acad Sci U S A ; 112(49): 15232-7, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26401023

RESUMEN

Host compatible rhizobia induce the formation of legume root nodules, symbiotic organs within which intracellular bacteria are present in plant-derived membrane compartments termed symbiosomes. In Medicago truncatula nodules, the Sinorhizobium microsymbionts undergo an irreversible differentiation process leading to the development of elongated polyploid noncultivable nitrogen fixing bacteroids that convert atmospheric dinitrogen into ammonia. This terminal differentiation is directed by the host plant and involves hundreds of nodule specific cysteine-rich peptides (NCRs). Except for certain in vitro activities of cationic peptides, the functional roles of individual NCR peptides in planta are not known. In this study, we demonstrate that the inability of M. truncatula dnf7 mutants to fix nitrogen is due to inactivation of a single NCR peptide, NCR169. In the absence of NCR169, bacterial differentiation was impaired and was associated with early senescence of the symbiotic cells. Introduction of the NCR169 gene into the dnf7-2/NCR169 deletion mutant restored symbiotic nitrogen fixation. Replacement of any of the cysteine residues in the NCR169 peptide with serine rendered it incapable of complementation, demonstrating an absolute requirement for all cysteines in planta. NCR169 was induced in the cell layers in which bacteroid elongation was most pronounced, and high expression persisted throughout the nitrogen-fixing nodule zone. Our results provide evidence for an essential role of NCR169 in the differentiation and persistence of nitrogen fixing bacteroids in M. truncatula.


Asunto(s)
Cisteína/química , Medicago truncatula/fisiología , Mutación , Fijación del Nitrógeno/fisiología , Proteínas de Plantas/fisiología , Medicago truncatula/genética , Proteínas de Plantas/química , Simbiosis
9.
Cell ; 150(5): 1002-15, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22921914

RESUMEN

In plants, where cells cannot migrate, asymmetric cell divisions (ACDs) must be confined to the appropriate spatial context. We investigate tissue-generating asymmetric divisions in a stem cell daughter within the Arabidopsis root. Spatial restriction of these divisions requires physical binding of the stem cell regulator SCARECROW (SCR) by the RETINOBLASTOMA-RELATED (RBR) protein. In the stem cell niche, SCR activity is counteracted by phosphorylation of RBR through a cyclinD6;1-CDK complex. This cyclin is itself under transcriptional control of SCR and its partner SHORT ROOT (SHR), creating a robust bistable circuit with either high or low SHR-SCR complex activity. Auxin biases this circuit by promoting CYCD6;1 transcription. Mathematical modeling shows that ACDs are only switched on after integration of radial and longitudinal information, determined by SHR and auxin distribution, respectively. Coupling of cell-cycle progression to protein degradation resets the circuit, resulting in a "flip flop" that constrains asymmetric cell division to the stem cell region.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Raíces de Plantas/citología , Secuencia de Aminoácidos , División Celular Asimétrica , Ciclina D/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Ácidos Indolacéticos/metabolismo , Células del Mesófilo/metabolismo , Datos de Secuencia Molecular , Fosforilación , Raíces de Plantas/metabolismo , Alineación de Secuencia
10.
EMBO J ; 31(6): 1480-93, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22307083

RESUMEN

Post-embryonic growth in plants depends on the continuous supply of undifferentiated cells within meristems. Proliferating cells maintain their competence for division by active repression of differentiation and the associated endocycle entry. We show by upregulation and downregulation of E2FA that it is required for maintaining proliferation, as well as for endocycle entry. While E2FB-RBR1 (retinoblastoma-related protein 1) complexes are reduced after sucrose addition or at elevated CYCD3;1 levels, E2FA maintains a stable complex with RBR1 in proliferating cells. Chromatin immunoprecipitation shows that RBR1 binds in the proximity of E2F promoter elements in CCS52A1 and CSS52A2 genes, central regulators for the switch from proliferation to endocycles. Overexpression of a truncated E2FA mutant (E2FA(ΔRB)) lacking the RBR1-binding domain interferes with RBR1 recruitment to promoters through E2FA, leading to decreased meristem size in roots, premature cell expansion and hyperactivated endocycle in leaves. E2F target genes, including CCS52A1 and CCS52A2, are upregulated in E2FA(ΔRB) and e2fa knockout lines. These data suggest that E2FA in complex with RBR1 forms a repressor complex in proliferating cells to inhibit premature differentiation and endocycle entry. Thus, E2FA regulates organ growth via two distinct, sequentially operating pathways.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Diferenciación Celular/genética , Procesos de Crecimiento Celular/genética , Cromatina/genética , Cromatina/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Meristema/metabolismo , Mutación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Sacarosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA