Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Biomed ; 4(1): 46, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38047990

RESUMEN

G protein-coupled receptors (GPCRs) are versatile and vital proteins involved in a wide array of physiological processes and responses, such as sensory perception (e.g., vision, taste, and smell), immune response, hormone regulation, and neurotransmission. Their diverse and essential roles in the body make them a significant focus for pharmaceutical research and drug development. Currently, approximately 35% of marketed drugs directly target GPCRs, underscoring their prominence as therapeutic targets. Recent advances in structural biology have substantially deepened our understanding of GPCR activation mechanisms and interactions with G-protein and arrestin signaling pathways. This review offers an in-depth exploration of both traditional and recent methods in GPCR structure analysis. It presents structure-based insights into ligand recognition and receptor activation mechanisms and delves deeper into the mechanisms of canonical and noncanonical signaling pathways downstream of GPCRs. Furthermore, it highlights recent advancements in GPCR-related drug discovery and development. Particular emphasis is placed on GPCR selective drugs, allosteric and biased signaling, polyphamarcology, and antibody drugs. Our goal is to provide researchers with a thorough and updated understanding of GPCR structure determination, signaling pathway investigation, and drug development. This foundation aims to propel forward-thinking therapeutic approaches that target GPCRs, drawing upon the latest insights into GPCR ligand selectivity, activation, and biased signaling mechanisms.

2.
Nature ; 624(7992): 672-681, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37935376

RESUMEN

Trace-amine-associated receptors (TAARs), a group of biogenic amine receptors, have essential roles in neurological and metabolic homeostasis1. They recognize diverse endogenous trace amines and subsequently activate a range of G-protein-subtype signalling pathways2,3. Notably, TAAR1 has emerged as a promising therapeutic target for treating psychiatric disorders4,5. However, the molecular mechanisms underlying its ability to recognize different ligands remain largely unclear. Here we present nine cryo-electron microscopy structures, with eight showing human and mouse TAAR1 in a complex with an array of ligands, including the endogenous 3-iodothyronamine, two antipsychotic agents, the psychoactive drug amphetamine and two identified catecholamine agonists, and one showing 5-HT1AR in a complex with an antipsychotic agent. These structures reveal a rigid consensus binding motif in TAAR1 that binds to endogenous trace amine stimuli and two extended binding pockets that accommodate diverse chemotypes. Combined with mutational analysis, functional assays and molecular dynamic simulations, we elucidate the structural basis of drug polypharmacology and identify the species-specific differences between human and mouse TAAR1. Our study provides insights into the mechanism of ligand recognition and G-protein selectivity by TAAR1, which may help in the discovery of ligands or therapeutic strategies for neurological and metabolic disorders.


Asunto(s)
Proteínas de Unión al GTP , Receptores Acoplados a Proteínas G , Animales , Humanos , Ratones , Aminas/metabolismo , Anfetamina/metabolismo , Antipsicóticos/química , Antipsicóticos/metabolismo , Sitios de Unión , Catecolaminas/agonistas , Catecolaminas/química , Catecolaminas/metabolismo , Microscopía por Crioelectrón , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/ultraestructura , Ligandos , Simulación de Dinámica Molecular , Mutación , Polifarmacología , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestructura , Especificidad de la Especie , Especificidad por Sustrato
3.
Chem Commun (Camb) ; 57(63): 7826-7829, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34278389

RESUMEN

A transformable upconversion MOF comprising a UCNP core and an azobenzene-based MOF shell is designed for NIR light-modulated chemotherapy. The dual Förster resonance energy transfers (FRETs) involved in this delivery system trigger the transformation of the MOF for drug release and prodrug activation, thus significantly inhibiting the tumor growth and metastasis.


Asunto(s)
Antineoplásicos/farmacología , Estructuras Metalorgánicas/química , Profármacos/farmacología , Animales , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Transferencia Resonante de Energía de Fluorescencia , Rayos Infrarrojos , Ratones , Estructura Molecular , Tamaño de la Partícula , Profármacos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA