Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Adv Mater ; 35(13): e2208966, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36609913

RESUMEN

Extracellular vesicles (EVs) are released by cells to mediate intercellular communication under pathological and physiological conditions. While small EVs (sEVs; <100-200 nm, exosomes) are intensely investigated, the properties and functions of medium and large EVs (big EVs (bEVs); >200 nm, microvesicles) are less well explored. Here, bEVs and sEVs are identified as distinct EV populations, and it is determined that bEVs are released in a greater bEV:sEV ratio in the aggressive human triple-negative breast cancer (TNBC) subtype. PalmGRET, bioluminescence-resonance-energy-transfer (BRET)-based EV reporter, reveals dose-dependent EV biodistribution at nonlethal and physiological EV dosages, as compared to lipophilic fluorescent dyes. Remarkably, the bEVs and sEVs exhibit unique biodistribution profiles, yet individually promote in vivo tumor growth in a syngeneic immunocompetent TNBC breast tumor murine model. The bEVs and sEVs share mass-spectrometry-identified tumor-progression-associated EV surface membrane proteins (tpEVSurfMEMs), which include solute carrier family 29 member 1, Cd9, and Cd44. tpEVSurfMEM depletion attenuates EV lung organotropism, alters biodistribution, and reduces protumorigenic potential. This study identifies distinct in vivo property and function of bEVs and sEVs in breast cancer, which suggest the significant role of bEVs in diseases, diagnostic and therapeutic applications.


Asunto(s)
Exosomas , Vesículas Extracelulares , Neoplasias de la Mama Triple Negativas , Ratones , Humanos , Animales , Distribución Tisular , Proteínas de la Membrana/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Vesículas Extracelulares/metabolismo , Exosomas/metabolismo , Carcinogénesis/metabolismo
2.
J Control Release ; 352: 920-930, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36334859

RESUMEN

While immunotherapy has emerged as a promising strategy to treat glioblastoma multiforme (GBM), the limited availability of immunotherapeutic agents in tumors due to the presence of the blood-brain barrier (BBB) and immunosuppressive tumor microenvironment dampens efficacy. Nitric oxide (NO) plays a role in modulating both the BBB and tumor vessels and could thus be delivered to disrupt the BBB and improve the delivery of immunotherapeutics into GBM tumors. Herein, we report an immunotherapeutic approach that utilizes CXCR4-targeted lipid­calcium-phosphate nanoparticles with NO donors (LCP-NO NPs). The delivery of NO resulted in enhanced BBB permeability and thus improved gene delivery across the BBB. CXCR4-targeted LCP-NO NPs delivered siRNA against the immune checkpoint ligand PD-L1 to GBM tumors, silenced PD-L1 expression, increased cytotoxic T cell infiltration and activation in GBM tumors, and suppressed GBM progression. Thus, the codelivery of NO and PD-L1 siRNA by these CXCR4-targeted NPs may serve as a potential immunotherapy for GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Humanos , Glioblastoma/tratamiento farmacológico , Antígeno B7-H1 , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Óxido Nítrico/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Inmunoterapia , Microambiente Tumoral , Línea Celular Tumoral , Receptores CXCR4/genética
3.
Gut ; 71(9): 1843-1855, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34921062

RESUMEN

OBJECTIVE: Stromal barriers, such as the abundant desmoplastic stroma that is characteristic of pancreatic ductal adenocarcinoma (PDAC), can block the delivery and decrease the tumour-penetrating ability of therapeutics such as tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), which can selectively induce cancer cell apoptosis. This study aimed to develop a TRAIL-based nanotherapy that not only eliminated the extracellular matrix barrier to increase TRAIL delivery into tumours but also blocked antiapoptotic mechanisms to overcome TRAIL resistance in PDAC. DESIGN: Nitric oxide (NO) plays a role in preventing tissue desmoplasia and could thus be delivered to disrupt the stromal barrier and improve TRAIL delivery in PDAC. We applied an in vitro-in vivo combinatorial phage display technique to identify novel peptide ligands to target the desmoplastic stroma in both murine and human orthotopic PDAC. We then constructed a stroma-targeted nanogel modified with phage display-identified tumour stroma-targeting peptides to co-deliver NO and TRAIL to PDAC and examined the anticancer effect in three-dimensional spheroid cultures in vitro and in orthotopic PDAC models in vivo. RESULTS: The delivery of NO to the PDAC tumour stroma resulted in reprogramming of activated pancreatic stellate cells, alleviation of tumour desmoplasia and downregulation of antiapoptotic BCL-2 protein expression, thereby facilitating tumour penetration by TRAIL and substantially enhancing the antitumour efficacy of TRAIL therapy. CONCLUSION: The co-delivery of TRAIL and NO by a stroma-targeted nanogel that remodels the fibrotic tumour microenvironment and suppresses tumour growth has the potential to be translated into a safe and promising treatment for PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/patología , Humanos , Ratones , Nanogeles , Óxido Nítrico , Neoplasias Pancreáticas/patología , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Microambiente Tumoral , Neoplasias Pancreáticas
4.
J Med Chem ; 64(19): 14513-14525, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34558909

RESUMEN

Autophagy is upregulated in response to metabolic stress, a hypoxic tumor microenvironment, and therapeutic stress in various cancers and mediates tumor progression and resistance to cancer therapy. Herein, we identified a cinchona alkaloid derivative containing urea (C1), which exhibited potential cytotoxicity and inhibited autophagy in hepatocellular carcinoma (HCC) cells. We showed that C1 not only induced apoptosis but also blocked autophagy in HCC cells, as indicated by the increased expression of LC3-II and p62, inhibition of autophagosome-lysosome fusion, and suppression of the Akt/mTOR/S6k pathway in the HCC cells. Finally, to improve its solubility and efficacy, we encapsulated C1 into PEGylated lipid-poly(lactic-co-glycolic acid) (PLGA) nanoscale drug carriers. Systemic administration of nanoscale C1 significantly suppressed primary tumor growth and prevented distant metastasis while maintaining a desirable safety profile. Our findings demonstrate that C1 combines autophagy modulation and apoptosis induction in a single molecule, making it a promising therapeutic option for HCC.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Carcinoma Hepatocelular/patología , Alcaloides de Cinchona/farmacología , Neoplasias Hepáticas/patología , Urea/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Microambiente Tumoral/efectos de los fármacos
5.
JACS Au ; 1(7): 998-1013, 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34467346

RESUMEN

Nitric oxide (NO), a pro-neurogenic and antineuroinflammatory gasotransmitter, features the potential to develop a translational medicine against neuropathological conditions. Despite the extensive efforts made on the controlled delivery of therapeutic NO, however, an orally active NO prodrug for a treatment of chronic neuropathy was not reported yet. Inspired by the natural dinitrosyl iron unit (DNIU) [Fe(NO)2], in this study, a reversible and dynamic interaction between the biomimetic [(NO)2Fe(µ-SCH2CH2OH)2Fe(NO)2] (DNIC-1) and serum albumin (or gastrointestinal mucin) was explored to discover endogenous proteins as a vehicle for an oral delivery of NO to the brain after an oral administration of DNIC-1. On the basis of the in vitro and in vivo study, a rapid binding of DNIC-1 toward gastrointestinal mucin yielding the mucin-bound dinitrosyl iron complex (DNIC) discovers the mucoadhesive nature of DNIC-1. A reversible interconversion between mucin-bound DNIC and DNIC-1 facilitates the mucus-penetrating migration of DNIC-1 shielded in the gastrointestinal tract of the stomach and small intestine. Moreover, the NO-release reactivity of DNIC-1 induces the transient opening of the cellular tight junction and enhances its paracellular permeability across the intestinal epithelial barrier. During circulation in the bloodstream, a stoichiometric binding of DNIC-1 to the serum albumin, as another endogenous protein vehicle, stabilizes the DNIU [Fe(NO)2] for a subsequent transfer into the brain. With aging mice under a Western diet as a disease model for metabolic syndrome and cognitive impairment, an oral administration of DNIC-1 in a daily manner for 16 weeks activates the hippocampal neurogenesis and ameliorates the impaired cognitive ability. Taken together, these findings disclose the synergy between biomimetic DNIC-1 and endogenous protein vehicles for an oral delivery of therapeutic NO to the brain against chronic neuropathy.

6.
Food Chem ; 139(1-4): 362-70, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23561118

RESUMEN

The antioxidant and antiglucotoxic effects of Alternanthera paronychioides on pancreatic ß-cell were investigated. Antioxidant assays demonstrated that ethanol extracts of A. paronychioides (EEAP) exhibited the highest antioxidant activity, which also had the highest phenolic and flavonoid contents. Two major polyphenolics, ferulic acid and quercetin, were identified from EEAP by HPLC-DAD. Effects of EEAP, ferulic acid and quercetin on high glucose (25 mmol/L)-induced pancreatic ß-cell apoptosis and dysfunction were further evaluated. Results showed that EEAP and quercetin but not ferulic acid protected ß-cells from glucotoxicity through several mechanisms, including: (1) maintaining ß-cell viability; (2) suppressing reactive oxygen species production; (3) reducing characteristic features of apoptosis; (4) inhibiting the activation of caspase-9 and caspase-3 and the cleavage of poly (ADP-ribose) polymerase; (5) upregulating pancreatic and duodenal homeobox 1 gene expression and the insulin secretagogue action of pancreatic ß-cells. These findings may shed light on the preventive actions of A. paronychioides on diabetic glucotoxicity.


Asunto(s)
Amaranthaceae/química , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Glucosa/toxicidad , Células Secretoras de Insulina/efectos de los fármacos , Insulina/metabolismo , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Glucosa/metabolismo , Humanos , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA