Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Ann Plast Surg ; 92(1S Suppl 1): S2-S11, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38285989

RESUMEN

BACKGROUND: The skin is the largest organ in the human body and serves as a barrier for protective, immune, and sensory functions. Continuous and permanent exposure to the external environment results in different levels of skin and extracellular matrix damage. During skin wound healing, the use of good dressings and addition of growth factors to the wound site can effectively modulate the rate of wound healing. A dressing containing bioactive substances can absorb wound exudates and reduce adhesion between the wound and dressing, whereas growth factors, cytokines, and signaling factors can promote cell motility and proliferation. AIM AND OBJECTIVES: We prepared a functional wound dressing by combining platelet-rich plasma (PRP) and zwitterionic hydrogels. Functional wound dressings are rich in various naturally occurring growth factors that can effectively promote the healing process in various types of tissues and absorb wound exudates to reduce adhesion between wounds and dressings. Furthermore, PRP-incorporated zwitterionic hydrogels have been used to repair full-thickness wounds in Sprague-Dawley rats with diabetes (DM SD). MATERIALS AND METHODS: Fibroblasts and keratinocytes were cultured with PRP, zwitterionic hydrogels, and PRP-incorporated zwitterionic hydrogels to assess cell proliferation and specific gene expression. Furthermore, PRP-incorporated zwitterionic hydrogels were used to repair full-thickness skin defects in DM SD rats. RESULTS: The swelling ratio of hydrogel, hydrogel + PRP1000 (108 platelets/mL), and hydrogel + PRP1000 (109 platelets/mL) groups were similar (~07.71% ± 1.396%, 700.17% ± 1.901%, 687.48% ± 4.661%, respectively) at 144 hours. The tensile strength and Young modulus of the hydrogel and hydrogel + PRP10000 groups were not significantly different. High concentrations of PRP (approximately 108 and 109 platelets/mL) effectively promoted the proliferation of fibroblasts and keratinocytes. The zwitterionic hydrogels were not cytotoxic to any cell type. High PRP concentration-incorporated zwitterionic hydrogels increased the rate of cell proliferation and significantly increased the expression of characteristic genes such as collagen, fibronectin, involucrin, and keratin. Subsequently, zwitterionic hydrogels with high PRP concentrations were used to repair full-thickness skin defects in DM SD rats, and a wound healing rate of more than 90% was recorded on day 12. CONCLUSIONS: PRP contains high concentrations of growth factors that promote cell viability, enhance specific gene expression, and have a high medical value in cell therapy. Zwitterionic hydrogels have a 3-dimensional interconnected microporous structure and can resist cell adhesion without causing cytotoxicity. Platelet-rich plasma-incorporated zwitterionic hydrogels further enhance the cellular properties and provide an effective therapeutic option for wound healing.


Asunto(s)
Diabetes Mellitus , Plasma Rico en Plaquetas , Ratas , Humanos , Animales , Cicatrización de Heridas , Hidrogeles , Ratas Sprague-Dawley , Plasma Rico en Plaquetas/química , Plasma Rico en Plaquetas/metabolismo , Diabetes Mellitus/metabolismo , Adherencias Tisulares
2.
Ann Plast Surg ; 88(1s Suppl 1): S13-S21, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35225844

RESUMEN

ABSTRACT: The adipose-derived stromal vascular fraction (SVF) is considered to be an attractive source of stem cells in cell therapy. Besides stem cells, it also contains functional cells, such as macrophages, precursor cells, somatic stem cells, and pericytes. Collagenase digestion is the most frequently used method to isolate SVF, but it is time-consuming and costly and has some problems, such as infectious agents and immune reactions. In this research, we compared the yield, cell population ratios, and cell viability when isolating SVF by the ultrasonic physics (U-SVF) method and traditional enzymatic method (E-SVF). Then, we isolated exosomes from U-SVF and E-SVF, respectively, and cocultured them with fibroblasts to investigate the potential of applying this cell secretion in wound repair. The results showed that there was no significant difference between the ultrasonic method and enzymatic method in terms of cell viability, cell numbers, or the expression of CD markers of stem cells. However, exosome analysis identified a greater number and smaller size of exosome particles obtained by U-SVF. In terms of cell proliferation efficiency, although the proliferation efficiency of U-SVF was lower than that of E-SVF. Trilineage differentiation experiments revealed that both E-SVF and U-SVF had good differentiation ability, owing to high stem cell content. Finally, E-SVF and U-SVF exosomes were cocultured with fibroblasts. The efficiency of fibroblast migration increased in the SVF exosome treated groups, and the expression of related genes (integrin α5ß1) was slightly upregulated; however, the expression of FAK, AKT, ERK, and RhoA was significantly upregulated at 24 hours. From the abovementioned experiments, we found that there was no significant difference in stem cell-related characteristics between SVF isolated by ultrasonic cavitation and SVF isolated by the enzymatic method. In addition, exosomes secreted by SVF may have excellent therapeutic effect on skin injuries, which provides a new viewpoint and therapeutic strategy for soft tissue repair.


Asunto(s)
Tejido Adiposo , Células del Estroma , Células Madre , Fracción Vascular Estromal , Cicatrización de Heridas
3.
Ann Plast Surg ; 86(2S Suppl 1): S3-S12, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33438949

RESUMEN

INTRODUCTION: Astragaloside IV (AS-IV) is a natural herb extract and a popular compound used in traditional Chinese medicine because of its effect on multiple biological processes, such as promotion of cell proliferation, improvement in cardiopulmonary and vascular function, and promotion of angiogenesis around wounds, leading to accelerated wound healing. Vascular regeneration primarily results from the differentiation of endothelial progenitor cells (EPCs). Biomedical acceleration of angiogenesis and differentiation of EPCs around the wound remain challenging. MATERIALS AND METHODS: In this study, we treated human umbilical cord blood-derived EPCs with AS-IV and cultured them on 2-dimensional (tissue culture polystyrene) and 3-dimensional culture plates (3DPs). These cultured cells were then combined with human blood plasma gel and applied on the skin of nude mice in an attempt to repair full-thickness skin defects. RESULTS: The results show that using 3DP culture could increase vascular-related gene expression in EPCs. Furthermore, 12.5 µg/mL AS-IV-treaded EPCs were combined with plasma gels (P-3DP-EPC12.5) and showed enhanced vascular-related protein expression levels after 3 days of culture. Finally, P-3DP-EPC12.5s were used to repair full-thickness skin defects in nude mice, and we could register a wound healing rate greater than 90% by day 14. CONCLUSIONS: Based on these results, we concluded that we have developed a potential therapeutic approach for wound healing using plasma gel containing 3-dimensional surface-cultured AS-IV-treated EPCs.


Asunto(s)
Células Progenitoras Endoteliales , Animales , Ratones , Ratones Desnudos , Neovascularización Fisiológica , Saponinas , Triterpenos , Cicatrización de Heridas
4.
Ann Plast Surg ; 84(1S Suppl 1): S116-S122, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31833898

RESUMEN

In this study, a novel antiadhesion membrane made of polycaprolactone, gelatin, and chitosan was fabricated using the electrospinning technique. A series of polycaprolactone/gelatin/chitosan (PGC) electrospun membranes with different amounts of chitosan (0%, 0.5%, 1%, and 2% in weight percentage) was synthesized. The physicochemical properties and biocompatibility of the fabricated membranes were examined and compared with the aim to select an effective antiadhesion membrane. Scanning electron microscopy showed that these 4 electrospun membranes had similar fiber diameter and pore area, with no statistical differences between them. Furthermore, the contact angle decreased with increased chitosan content, indicating that chitosan may contribute to increased hydrophilic properties. The in vitro degradation test revealed that the higher chitosan content corresponded to a lower degradation rate in PGC membranes within 7 days. All PGC membranes exhibited similar cell proliferation; however, cell proliferation was lower than tissue culture polystyrene (P < 0.05). To compare antiadhesion ability, the adhesion between the cecum and abdominal wall was created in a rat model. Assessment after implantation of electrospun membranes revealed that PGCs with higher chitosan content (PGC2) had better antiadhesion effects, as evaluated by an adhesion score at day 14 postsurgery. Thus, PGC2 was effective in reducing the formation of tissue adhesion. Therefore, PGC electrospun membrane may provide a potential peritoneal antiadhesion barrier for clinical use.


Asunto(s)
Quitosano , Animales , Materiales Biocompatibles , Gelatina , Membranas Artificiales , Poliésteres , Ratas , Andamios del Tejido
5.
Ann Plast Surg ; 82(1S Suppl 1): S119-S125, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30516561

RESUMEN

The pigment melanin is produced by melanocytes, is primarily responsible for skin color, and protects it against ultraviolet rays that can cause the destruction of genetic material within the keratinocytes. To elucidate the mechanisms of many diseases associated with melanocytes, such as melanoma and albinism, or burns with uneven pigment distribution, the disease model needs to be established first. In this study, we aimed to construct the melanocyte model from patients in a short period.Sandai virus vector containing 4 stemness genes (Oct4, Sox2, Klf4, c-Myc) was transfected into human adipose-derived stem cells to produce induced pluripotent stem cells (iPSCs). Immunofluorescence staining was used to confirm the expression of specific proteins for iPSCs, including Tra-1-60, Tra-1-81, Oct-4, Sox-2, and Nango. polymerase chain reaction results also showed that specific genes of iPSCs with the ability to cause the differentiation of cells into the 3 germ layers were expressed. In our in vivo experiments, iPSCs were subcutaneously injected into nude mice to induce teratoma formation for 2 months. The morphology of the 3 germ layers was confirmed by hematoxylin and eosin staining. Furthermore, melanocytes were purified by serial induction medium, and their presence was confirmed by flow cytometry and the expression of different markers for melanocytes.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Pluripotentes Inducidas/citología , Melanocitos/citología , Teratoma/patología , Adipocitos/citología , Adipocitos/fisiología , Animales , Biopsia con Aguja , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , China , Modelos Animales de Enfermedad , Citometría de Flujo , Humanos , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/fisiología , Factor 4 Similar a Kruppel , Melanocitos/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Reacción en Cadena de la Polimerasa/métodos , Distribución Aleatoria , Teratoma/terapia
6.
Cell Transplant ; 27(10): 1535-1547, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30203684

RESUMEN

Skin substitutes with existing vascularization are in great demand for the repair of full-thickness skin defects. In the present study, we hypothesized that a pre-vascularized skin substitute can potentially promote wound healing. Novel three-dimensional (3D) skin substitutes were prepared by seeding a mixture of human endothelial progenitor cells (EPCs) and fibroblasts into a human plasma/calcium chloride formed gel scaffold, and seeding keratinocytes onto the surface of the plasma gel. The capacity of the EPCs to differentiate into a vascular-like tubular structure was evaluated using immunohistochemistry analysis and WST-8 assay. Experimental studies in mouse full-thickness skin wound models showed that the pre-vascularized gel scaffold significantly accelerated wound healing 7 days after surgery, and resembled normal skin structures after 14 days post-surgery. Histological analysis revealed that pre-vascularized gel scaffolds were well integrated in the host skin, resulting in the vascularization of both the epidermis and dermis in the wound area. Moreover, mechanical strength analysis demonstrated that the healed wound following the implantation of the pre-vascularized gel scaffolds exhibited good tensile strength. Taken together, this novel pre-vascularized human plasma gel scaffold has great potential in skin tissue engineering.


Asunto(s)
Células Progenitoras Endoteliales/citología , Fibroblastos/citología , Geles/química , Queratinocitos/citología , Plasma/química , Piel Artificial , Andamios del Tejido/química , Animales , Células Cultivadas , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Neovascularización Fisiológica , Piel/irrigación sanguínea , Piel/citología , Resistencia a la Tracción , Ingeniería de Tejidos/métodos , Cicatrización de Heridas
7.
Ann Plast Surg ; 80(2S Suppl 1): S66-S69, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29369904

RESUMEN

Platelet-rich plasma (PRP) is a kind of plasma that is rich in platelets after processing. It includes various growth factors and cytokines, which speed up the process of wound healing and hemostasis. The PRP solution used in this study is diluted from lyophilized PRP powder, which decreased the possibility of contamination, facilitated the storage, and prolonged the storage life. From in vitro fibroblast proliferation testing, the numbers of PRP supplement were performed for 1, 4, and 7 times by continuous replacement of culture medium each day. Four times of lyophilized PRP supplement was selected for clinical study due to sufficient promotion of fibroblast proliferation. Next, 27 patients of deep second-degree burn wound were included in this study. Patients were assigned to two groups: PRP group (n = 15) and control group (n = 12). A concentration of 1.0 × 10 platelets/cm (wound area) according to wound size was sprayed on the wound evenly. Function was mainly assessed by the percentage of wound closure and bacteria picking out rate in 2 and 3 weeks. The wound closure at 3 weeks showed a significant difference in PRP group (P < 0.05). The healing rate of PRP group reached nearly 80% and made a breakthrough of 90% in 3 weeks, showing a significant difference compared with the control group (P < 0.05). Lyophilized PRP can be considered as an effective treatment to increase healing rate in patients with deep second-degree burn injury.


Asunto(s)
Quemaduras/patología , Quemaduras/terapia , Apósitos Oclusivos , Plasma Rico en Plaquetas , Cicatrización de Heridas/fisiología , Superficie Corporal , Proliferación Celular/efectos de los fármacos , Método Doble Ciego , Femenino , Fibroblastos/citología , Fibroblastos/fisiología , Humanos , Puntaje de Gravedad del Traumatismo , Masculino , Polvos/uso terapéutico , Pronóstico , Estudios Prospectivos , Resultado del Tratamiento
8.
Adv Drug Deliv Rev ; 123: 155-164, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29079536

RESUMEN

Significant skin pigmentation changes occur when patients suffer deep burn injuries. These pigmentation disorders may cause not only cosmetic and psychological issues, but more importantly it increases the risk of skin cancer or photoaging. Severe burns significantly effect on the process of repigmentation as the pigmentation is tightly regulated by cell proliferation and differentiation of melanocytes and melanocyte stem cells which are housing in the epidermis and hair follicles of the skin. In the present review, we discuss the possible mechanisms to replenish the melanocytes from the healthy epidermis and hair follicles surrounding burn wounds. The molecular mechanisms of skin repigmentation following healing of burn injuries includes the differentiation of melanoblasts into melanocytes, the distribution and responses of melanocytes and melanocyte stem cells after burn injury, and the regulation of melanin production. We also reviewed advanced therapeutic strategies to treat pigmentation disorders, such as convectional surgery, laser, UV treatment and emerging concepts in skin tissue-engineering.


Asunto(s)
Quemaduras/complicaciones , Quemaduras/terapia , Células Epidérmicas , Folículo Piloso , Trastornos de la Pigmentación/etiología , Trastornos de la Pigmentación/terapia , Pigmentación de la Piel , Cicatrización de Heridas , Humanos
9.
Ann Plast Surg ; 78(3 Suppl 2): S124-S128, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28195889

RESUMEN

Massive bleeding is the leading cause of battlefield-related deaths and the second leading cause of deaths in civilian trauma centers. One of the challenges of managing severe wounds is the need to promote hemostasis as quickly as possible, which can be achieved by using hemostatic dressings. In this study, we fabricated 2 kinds of gelatin/polycaprolactone composites with 2 ratios of gelatin/polycaprolactone, 1:1 and 2:1 (GP11 and GP21, respectively). Scanning electron microscopy revealed that the GP11 composite exhibited rougher and more porous structure than the GP21 composite did. Furthermore, both composites showed similar biocompatibility as that of tissue culture polystyrene. Moreover, both GP composites tended to show a gradual decrease in contact angle to zero within 40 minutes. The in vitro blood plasma coagulation assay revealed that the prothrombin time was significantly longer for the GP composites than it was for the Quikclot composite, whereas the activated partial thromboplastin time of the GP11 composite was significantly shorter than that of the gauze. Furthermore, the GP11 had the largest platelet adsorption of all the composites. The in vivo coagulation test showed an obvious shortening of the bleeding time with the Quikclot and GP21 compared with gauze sample. In conclusion, the GP composites showed superior biocompatibility and hemostasis to the gauze and comparable effects with the Qickclot composite. Therefore, the GP composites have the potential for development as biodegradable surgical hemostatic agents.


Asunto(s)
Gelatina/farmacología , Hemostasis Quirúrgica/métodos , Hemostáticos/farmacología , Poliésteres/farmacología , Materiales Biocompatibles , Plaquetas/citología , Adhesión Celular , Fibroblastos , Microscopía Electrónica de Rastreo , Porosidad , Propiedades de Superficie , Tapones Quirúrgicos de Gaza
10.
Wound Repair Regen ; 23(1): 57-64, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25421559

RESUMEN

Adult adipose-derived stem cells (ASCs) are a type of multipotent mesenchymal stem cells (MSCs) with easy availability and serve as a potential cell source for cell-based therapy. Three-dimensional MSC spheroids may be derived from the self-assembly of individual MSCs grown on certain polymer membranes. In this study, we demonstrated that the self-assembled ASC spheroids on chitosan-hyaluronan membranes expressed more cytokine genes (fibroblast growth factor 1, vascular endothelial growth factor, and chemokine [C-C motif] ligand 2) as well as migration-associated genes (chemokine [C-X-C motif] receptor type 4 and matrix metalloprotease 1) compared with ASC dispersed single cells grown on culture dish. To evaluate the in vivo effects of these spheroids, we applied ASC single cells and ASC spheroids in a designed rat skin repair model. Wounds of 15 × 15 mm were created on rat dorsal skin, where ASCs were administered and covered with hyaluronan gel/chitosan sponge to maintain a moist environment. Results showed that skin wounds treated with ASC spheroids had faster wound closure and a significantly higher ratio of angiogenesis. Tracking of fluorescently labeled ASCs showed close localization of ASC spheroids to microvessels, suggesting enhanced angiogenesis through paracrine effects. Based on the in vitro and in vivo results, the self-assembled ASC spheroids may be a promising cellular source for skin tissue engineering and wound regeneration.


Asunto(s)
Tejido Adiposo/patología , Materiales Biocompatibles/farmacología , Tratamiento Basado en Trasplante de Células y Tejidos , Quitosano/farmacología , Ácido Hialurónico/farmacología , Células Madre Mesenquimatosas/metabolismo , Piel/patología , Cicatrización de Heridas/fisiología , Tejido Adiposo/citología , Animales , Adhesión Celular , Proliferación Celular , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratas , Piel/lesiones , Esferoides Celulares/metabolismo , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA