Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
FEBS J ; 289(13): 3770-3788, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35066976

RESUMEN

The bacterial heterodimeric ATP-binding cassette (ABC) multidrug exporter PatAB has a critical role in conferring antibiotic resistance in multidrug-resistant infections by Streptococcus pneumoniae. As with other heterodimeric ABC exporters, PatAB contains two transmembrane domains that form a drug translocation pathway for efflux and two nucleotide-binding domains that bind ATP, one of which is hydrolysed during transport. The structural and functional elements in heterodimeric ABC multidrug exporters that determine interactions with drugs and couple drug binding to nucleotide hydrolysis are not fully understood. Here, we used mass spectrometry techniques to determine the subunit stoichiometry in PatAB in our lactococcal expression system and investigate locations of drug binding using the fluorescent drug-mimetic azido-ethidium. Surprisingly, our analyses of azido-ethidium-labelled PatAB peptides point to ethidium binding in the PatA nucleotide-binding domain, with the azido moiety crosslinked to residue Q521 in the H-like loop of the degenerate nucleotide-binding site. Investigation into this compound and residue's role in nucleotide hydrolysis pointed to a reduction in the activity for a Q521A mutant and ethidium-dependent inhibition in both mutant and wild type. Most transported drugs did not stimulate or inhibit nucleotide hydrolysis of PatAB in detergent solution or lipidic nanodiscs. However, further examples for ethidium-like inhibition were found with propidium, novobiocin and coumermycin A1, which all inhibit nucleotide hydrolysis by a non-competitive mechanism. These data cast light on potential mechanisms by which drugs can regulate nucleotide hydrolysis by PatAB, which might involve a novel drug binding site near the nucleotide-binding domains.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Streptococcus pneumoniae , Transportadoras de Casetes de Unión a ATP/química , Adenosina Trifosfato/metabolismo , Etidio/metabolismo , Hidrólisis , Nucleótidos/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
2.
J Drug Target ; 28(4): 408-418, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31524004

RESUMEN

The targeted delivery of therapeutic agents is a promising approach to enhance the efficacy and reduce the toxicity of cancer treatments. Understanding the intracellular endocytic mechanisms of a cell penetrating peptide (CPP) in an acidic environment is important for targeted delivery of macromolecules to tumours. In this study, we constructed a pH-sensitive CPP-based delivery system for the intracellular delivery of macromolecules. A pH-sensitive CPP, HBHAc, was fused with a model protein, enhanced green fluorescent protein (EGFP), through recombinant DNA technology. We found that is essential that negatively charged proteoglycans on the cell surface interact with HBHAc-EGFP prior to the cellular uptake of HBHAc-EGFP. The uptake was significantly restricted at 4 °C under pH conditions of both 6.5 and 7.5. The increased positive charge of HBHAc-EGFP under the acidic condition leads to a pH-dependent cellular uptake, and we observed that the internalisation of HBHAc-EGFP was significantly higher at pH 6.5 than at pH 7.5 (p < .05). Thus, with pH-sensitive activity, HBHAc is expected to improve tumour-targeted intracellular protein delivery. Moreover, our findings provide a new insight that the endocytic pathway may change under different pH conditions and suggest that this unique phenomenon benefits pH-sensitive drug delivery for tumour therapy.


Asunto(s)
Péptidos de Penetración Celular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Citoplasma/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Endocitosis/efectos de los fármacos , Células Hep G2 , Humanos , Concentración de Iones de Hidrógeno , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos
3.
J Cell Biochem ; 103(2): 528-37, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17549699

RESUMEN

Tumor suppressor p53 is an essential regulator in mammalian cellular responses to DNA damage including cell cycle arrest and apoptosis. Our study with Chinese hamster ovary CHO-K1 cells indicates that when p53 expression and its transactivation capacity was inhibited by siRNA, UVC-induced G2/M arrest or apoptosis were unaffected as revealed by flow cyotmetric analyses and other measurements. However, inhibition of p53 rendered the cells slower to repair UV-induced damages upon a plasmid as shown in host cell reactivation assay. Furthermore, the nuclear extract (NE) of p53 siRNA-treated cells was inactive to excise the UV-induced DNA adducts as analyzed by comet assay. Consistently, the immunodepletion of p53 also deprived the excision activity of the NE in the similar experiment. Thus, tumor suppressor p53 of CHO-K1 cells may facilitate removal of UV-induced DNA damages partly via its involvement in the repair mechanism.


Asunto(s)
Reparación del ADN , Fase G2/efectos de la radiación , Metafase/efectos de la radiación , Proteína p53 Supresora de Tumor/fisiología , Rayos Ultravioleta/efectos adversos , Animales , Apoptosis/efectos de la radiación , Células CHO/efectos de los fármacos , Células CHO/metabolismo , Células CHO/efectos de la radiación , Cafeína/farmacología , Línea Celular/efectos de los fármacos , Línea Celular/metabolismo , Línea Celular/efectos de la radiación , Cricetinae , Cricetulus , Daño del ADN , Femenino , Marcación de Gen , Genes p53/efectos de los fármacos , Humanos , Pulmón , ARN Interferente Pequeño/farmacología , Especificidad de la Especie , Activación Transcripcional , Transfección , Proteína p53 Supresora de Tumor/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA