Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Food Res Int ; 186: 114397, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729739

RESUMEN

The formation mechanism behind the sophisticated aromas of sesame oil (SO) has not been elucidated. The interaction effects of the Maillard reaction (MR) and lipid oxidation on the aroma formation of fragrant sesame oil were investigated in model reaction systems made of l-lysine (Lys) and d-glucose (Glc) with or without fresh SO (FSO) or oxidized SO (OSO). The addition of OSO to the Lys-Glc model increased the MR browning at 294 nm and 420 nm and enhanced the DPPH radical scavenging activity greater than the addition of FSO (p < 0.05). The presence of lysine and glucose inhibited the oxidation of sesame oil, reduced the loss of γ-tocopherol, and facilitated the formation of sesamol (p < 0.05). The Maillard-lipid interaction led to the increased concentrations of some of the alkylpyrazines, alkylfurans, and MR-derived ketones and acids (p < 0.05) while reducing the concentrations of other pyrazines, lipid-derived furans, aliphatic aldehydes, ketones, alcohols, and acids (p < 0.05). The addition of FSO to the MR model enhanced the characteristic roasted, nutty, sweet, and fatty aromas in sesame oil (p < 0.05), while excessive lipid oxidation (OSO) brought about an unpleasant oxidized odor and reduced the characteristic aromas. This study helps to understand the sophisticated aroma formation mechanism in sesame oil and provides scientific instruction for precise flavor control in the production of sesame oil.


Asunto(s)
Glucosa , Lisina , Reacción de Maillard , Odorantes , Oxidación-Reducción , Aceite de Sésamo , Aceite de Sésamo/química , Glucosa/química , Odorantes/análisis , Lisina/química , Fenoles/química , Benzodioxoles
2.
Exp Hematol ; 129: 104125, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38743005

RESUMEN

The revised International Prognostic Index (R-IPI) is an important prognostic tool in diffuse large B cell lymphoma (DLBCL); however, outcomes can vary markedly within R-IPI groups, and additional prognostic markers are needed. We conducted a prospective observational study to evaluate the circulating immature myeloid (IM) cell subsets and cytokine profiles of 31 patients with newly diagnosed DLBCL before and after chemoimmunotherapy. Among circulating IM cells, myeloid-derived suppressor cells (MDSCs) were the predominant cell type (73.8% ± 26%). At baseline, circulating monocytic MDSCs (M-MDSCs) and polymorphonuclear MDSCs (PMN-MDSCs) were predominantly mutually exclusive. Patients with DLBCL clustered into three distinct immunotypes according to MDSC levels and subtype predominance: M-MDSChigh, PMN-MDSChigh, and MDSClow. The M-MDSChigh immunotype was associated with the germinal center B cell-like (GCB) subtype and elevated serum IL-8 and MIP-1α levels. PMN-MDSChigh was associated with the non-GCB subtype and elevated IL-8, MCP-1, IP-10, TNFα, and IL-1Ra levels. Standard chemoimmunotherapy partially reduced M-MDSC distribution across the MDSClow and M-MDSChigh groups. By contrast, among the MDSClow and PMN-MDSChigh groups, PMN-MDSCs persisted after treatment. Two high-risk patients with non-GCB DLBCL and MDSClow immunotype experienced early disease recurrence within 12 months of treatment completion. This study demonstrates that distinct types of MDSCs are associated with subtypes of DLBCL. MDSC levels are dynamic and may be associated with disease status. Persistence of PMN-MDSCs among high-risk patients with DLBCL may be associated with early relapse.


Asunto(s)
Linfoma de Células B Grandes Difuso , Células Supresoras de Origen Mieloide , Humanos , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/patología , Células Supresoras de Origen Mieloide/metabolismo , Linfoma de Células B Grandes Difuso/diagnóstico , Linfoma de Células B Grandes Difuso/terapia , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/patología , Linfoma de Células B Grandes Difuso/inmunología , Linfoma de Células B Grandes Difuso/sangre , Femenino , Masculino , Persona de Mediana Edad , Anciano , Pronóstico , Inflamación/patología , Adulto , Estudios Prospectivos , Anciano de 80 o más Años , Citocinas/sangre , Inmunoterapia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
3.
Blood Adv ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739715

RESUMEN

Little is known about risk factors for central nervous system (CNS) relapse in mature T- and NK-cell neoplasms (MTNKN). We aimed to describe the clinical epidemiology of CNS relapse in patients with MTNKN and developed the CNS relapse In T-cell lymphoma Index (CITI) to predict patients at highest risk of CNS relapse. We reviewed data from 135 patients with MTNKN and CNS relapse from 19 North American institutions. After exclusion of leukemic and most cutaneous forms of MTNKN, patients were pooled with non-CNS relapse control patients from a single institution to create a CNS relapse-enriched training set. Using a complete case analysis (N=182), of whom 91 had CNS relapse, we applied a LASSO Cox regression model to select weighted clinicopathologic variables for the CITI score, which we validated in an external cohort from the Swedish Lymphoma Registry (N=566). CNS relapse was most frequently observed in patients with PTCL, NOS (25%). Median time to CNS relapse and median overall survival after CNS relapse was 8.0 months and 4.7 months, respectively. We calculated unique CITI risk scores for individual training set patients and stratified them into risk terciles. Validation set patients with low-risk (N=158) and high-risk (N=188) CITI scores had a 10-year cumulative risk of CNS relapse of 2.2% and 13.4%, respectively (HR 5.24, 95%CI 1.50-18.26, P=0.018). We developed an open-access web-based CITI calculator (https://redcap.link/citicalc) to provide an easy tool for clinical practice. The CITI score is a validated model to predict patients with MTNKN at highest risk of developing CNS relapse.

4.
J Nanobiotechnology ; 22(1): 195, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643173

RESUMEN

Doxorubicin (DOX) is a chemotherapeutic agent widely used for tumor treatment. Nonetheless its clinical application is heavily limited by its cardiotoxicity. There is accumulated evidence that transplantation of mesenchymal stem cell-derived exosomes (MSC-EXOs) can protect against Dox-induced cardiomyopathy (DIC). This study aimed to examine the cardioprotective effects of EXOs isolated from human induced pluripotent stem cell-derived MSCs (iPSC-MSCs) against DIC and explore the potential mechanisms. EXOs were isolated from the cultural supernatant of human BM-MSCs (BM-MSC-EXOs) and iPSC-MSCs (iPSC-MSC-EXOs) by ultracentrifugation. A mouse model of DIC was induced by intraperitoneal injection of Dox followed by tail vein injection of PBS, BM-MSC-EXOs, or iPSC-MSC-EXOs. Cardiac function, cardiomyocyte senescence and mitochondrial dynamics in each group were assessed. In vitro, neonatal mouse cardiomyocytes (NMCMs) were subjected to Dox and treated with BM-MSC-EXOs or iPSC-MSC-EXOs. The mitochondrial morphology and cellular senescence of NMCMs were examined by Mitotracker staining and senescence-associated-ß-galactosidase assay, respectively. Compared with BM-MSC-EXOs, mice treated with iPSC-MSC-EXOs displayed improved cardiac function and decreased cardiomyocyte mitochondrial fragmentation and senescence. In vitro, iPSC-MSC-EXOs were superior to BM-MSC-EXOs in attenuation of cardiomyocyte mitochondrial fragmentation and senescence caused by DOX. MicroRNA sequencing revealed a higher level of miR-9-5p in iPSC-MSC-EXOs than BM-MSC-EXOs. Mechanistically, iPSC-MSC-EXOs transported miR-9-5p into DOX-treated cardiomyocytes, thereby suppressing cardiomyocyte mitochondrial fragmentation and senescence via regulation of the VPO1/ERK signal pathway. These protective effects and cardioprotection against DIC were largely reversed by knockdown of miR-9-5p in iPSC-MSC-EXOs. Our results showed that miR-9-5p transferred by iPSC-MSC-EXOs protected against DIC by alleviating cardiomyocyte senescence via inhibition of the VPO1/ERK pathway. This study offers new insight into the application of iPSC-MSC-EXOs as a novel therapeutic strategy for DIC treatment.


Asunto(s)
Cardiomiopatías , Células Madre Pluripotentes Inducidas , MicroARNs , Humanos , Ratones , Animales , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Cardiomiopatías/inducido químicamente , Transducción de Señal , Doxorrubicina
5.
Exp Hematol Oncol ; 13(1): 20, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388466

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is closely associatedwith chronic liver diseases, particularly liver cirrhosis, which has an altered extracellular matrix (ECM) composition. The influence and its mechanism of the cirrhotic-ECM on the response of HCC to immune checkpoint inhibitor (ICI) remains less clarified. METHODS: In silico, proteomic and pathological assessment of alteration of cirrhotic-ECM were applied in clinical cohort. Multiple pre-clinical models with ECM manipulation were used to evaluate cirrhotic-ECM's effect on ICI treatment. In silico, flow cytometry and IHC were applied to explore how cirrhotic-ECM affect HCC microenvironment. In vitro and in vivo experiments were carried out to identify the mechanism of how cirrhotic-ECM undermined ICI treatment. RESULTS: We defined "a pro-tumor cirrhotic-ECM" which was featured as the up-regulation of collagen type 1 (Col1). Cirrhotic-ECM/Col1 was closely related to impaired T cell function and limited anti PD-1 (aPD-1) response of HCC patients from the TCGA pan cancer cohort and the authors' institution, as well as in multiple pre-clinical models. Mechanically, cirrhotic-ECM/Col1 orchestrated an immunosuppressive microenvironment (TME) by triggering Col1-DDR1-NFκB-CXCL8 axis, which initiated neutrophil extracellular traps (NETs) formation to shield HCC cells from attacking T cells and impede approaching T cells. Nilotinib, an inhibitor of DDR1, reversed the neutrophils/NETs dominant TME and efficiently enhanced the response of HCC to aPD-1. CONCLUSIONS: Cirrhotic-ECM modulated a NETs enriched TME in HCC, produced an immune suppressive TME and weakened ICI efficiency. Col1 receptor DDR1 could be a potential target synergically used with ICI to overcome ECM mediated ICI resistance. These provide a mechanical insight and novel strategy to overcome the ICI resistance of HCC.

6.
Se Pu ; 42(1): 38-51, 2024 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-38197205

RESUMEN

The methods of detecting numerous prohibited components are not included in the Technical Specifications for Cosmetic Safety (2015 Edition). Recently, owing to its high speed, sensitivity, and anti-interference properties, ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) became the preferred method of detecting banned substances in cosmetics. In this study, a UPLC-MS/MS method was developed for use in determining 87 prohibited ingredients in cosmetics, including 33 sex hormones, 20 anti-infective drugs, 15 antihistamines, 7 coumarins, 4 sedative-hypnotic drugs, 4 antipyretic and analgesic drugs, 2 allergenic fragrances, and 2 drugs with vasoconstriction effects. The main factors affecting the response, recovery, and sensitivity of the method, such as the type of extraction solvent, extraction time, ratio of the mobile phases, and MS conditions, were optimized during sample pretreatment and instrumental analysis. Accordingly, approximately 0.2 g of the toner or cream sample was dispersed in 2 mL acetonitrile in a 10 mL colorimetric tube. After diluting to 10 mL with 50% acetonitrile aqueous solution, the sample was ultrasonically extracted for 20 min and centrifuged, and the mixture was then filtered through a 0.22 µm membrane. Approximately 0.2 g of the oil sample was dispersed in 2 mL n-hexane in a 15 mL polypropylene centrifuge tube and extracted twice with 3 mL 70% acetonitrile aqueous solution. The extracts were transferred into a 10 mL colorimetric tube and diluted to 10 mL with 50% acetonitrile aqueous solution, and the mixture was then filtered through a 0.22 µm membrane. The samples were separated using a CORTECS C18 column (150 mm×2.1 mm, 2.7 µm), employing a gradient elution program with acetonitrile and 0.1% formic acid aqueous solution as the mobile phases. The flow rate, column temperature, and injection volume were respectively set at 0.3 mL/min, 40 ℃, and 2 µL. The 87 compounds were monitored in multiple reaction monitoring (MRM) mode with electrospray ionization (ESI) under positive and negative conditions. Matrix-matched external standard calibration was used for quantification, and the analysis was completed within 33 min. The prohibited compounds exhibited good linear relationships, with r values of >0.99, and the limits of detection (LODs) and quantification (LOQs) for the 87 compounds were 0.07-0.38 and 0.21-1.15 µg/g, respectively. Three types of cosmetic matrices were selected to verify the recovery and precision of the method at LOQ, 2 LOQ, and 10 LOQ levels. The average recoveries of the 87 prohibited compounds were in the range of 81.7%-115.4%, and the relative standard deviations (RSDs, n=6) were 0.4%-9.9%. The reliability of the developed method was demonstrated by applying it to 349 commercial cosmetics obtained from the market, and 8 positive samples were identified. The positive components included trimethoprim, terbinafine, naphazoline, 7-methoxycoumarin, and 7-methylcoumarin. The established method displays the advantages of simple operation and rapidness and a high sensitivity and good recovery. And, this method provides technical support for rapid risk screening and the revision of national standards for cosmetics.


Asunto(s)
Cosméticos , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Reproducibilidad de los Resultados , Acetonitrilos
7.
J Appl Toxicol ; 44(4): 582-594, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37968239

RESUMEN

Cholestasis is a pathological condition characterized by disruptions in bile flow, leading to the accumulation of bile acids (BAs) in hepatocytes. Allocholic acid (ACA), a unique fetal BA known for its potent choleretic effects, reappears during liver regeneration and carcinogenesis. In this research, we investigated the protective effects and underlying mechanisms of ACA against mice with cholestasis brought on by α-naphthylisothiocyanate (ANIT). To achieve this, we combined network pharmacology, targeted BA metabolomics, and molecular biology approaches. The results demonstrated that ACA treatment effectively reduced levels of serum AST, ALP, and DBIL, and ameliorated the pathological injury caused by cholestasis. Network pharmacology analysis suggested that ACA primarily regulated BA and salt transport, along with the signaling pathway associated with bile secretion, to improve cholestasis. Subsequently, we examined changes in BA metabolism using UPLC-MS/MS. The findings indicated that ACA pretreatment induced alterations in the size, distribution, and composition of the liver BA pool. Specifically, it reduced the excessive accumulation of BAs, especially cholic acid (CA), taurocholic acid (TCA), and ß-muricholic acid (ß-MCA), facilitating the restoration of BA homeostasis. Furthermore, ACA pretreatment significantly downregulated the expression of hepatic BA synthase Cyp8b1, while enhancing the expression of hepatic efflux transporter Mrp4, as well as the renal efflux transporters Mdr1 and Mrp2. These changes collectively contributed to improved BA efflux from the liver and enhanced renal elimination of BAs. In conclusion, ACA demonstrated its potential to ameliorate ANIT-induced liver damage by inhibiting BA synthesis and promoting both BA efflux and renal elimination pathways, thus, restoring BA homeostasis.


Asunto(s)
Ácidos y Sales Biliares , Colestasis , Ratones , Animales , Ácidos y Sales Biliares/metabolismo , 1-Naftilisotiocianato/toxicidad , 1-Naftilisotiocianato/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Colestasis/inducido químicamente , Colestasis/prevención & control , Hígado , Ácidos Cólicos/metabolismo , Ácidos Cólicos/farmacología , Ácidos Cólicos/uso terapéutico , Proteínas de Transporte de Membrana/metabolismo , Homeostasis
8.
Talanta ; 266(Pt 2): 125039, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37604070

RESUMEN

Nucleic acid aptamers are of great potentials in diagnostic and therapeutic applications because of their unique molecular recognition capabilities. However, satisfactory aptamers with high affinity and specificity are still in short supply. Herein, we have developed new selection methods allowing the free interactions between the targets and potential aptamers in solution. In our selection system, the protein targets (biotinylated randomly or site-specifically) were first incubated with the random DNA library, followed by the pull-down with the streptavidin magnetic beads or biolayer-interferometry (BLI) sensors. By comparing the two biotinylation strategies (random or site-specific) and two states of the targets (free or immobilized), we have found that the combination of the site-specific biotinylation and free-target strategies was most successful. Based on these highly-efficient selection strategies, HPV L1 aptamers were obtained. By designing the sandwich aptasensor assisted with RCA and CRISPR/Cas12a, we have diagnosed various HPV subtypes in clinical samples, such as easily-collected urine samples. In summary, our new strategy can allow efficient selection of aptamers with high affinity and specificity for clinical applications.


Asunto(s)
Infecciones por Papillomavirus , Humanos , Biotinilación , Proteínas de la Cápside , Interferometría , Oligonucleótidos
9.
FASEB J ; 37(12): e23294, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37966425

RESUMEN

Despite promising results in myocardial infarction (MI), mesenchymal stem cell (MSC)-based therapy is limited by cell senescence. N6-methyladenosine (m6A) messenger RNA methylation has been reported to be closely associated with cell senescence. Nonetheless, its role in the regulation of MSC senescence remains unclear. We examined the role of ALKB homolog 5 (ALKBH5) in regulating MSC senescence and determined whether ALKBH5 downregulation could rejuvenate aged MSCs (AMSCs) to improve their therapeutic efficacy for MI. RNA methylation was determined by m6A dot blotting assay. MSC senescence was evaluated by senescence-associated ß-galactosidase (SA-ß-gal) staining. A mouse model of acute MI was established by ligation of the left anterior decedent coronary artery (LAD). Compared with young MSCs (YMSCs), m6A level was significantly reduced but ALKBH5 was greatly increased in AMSCs. Overexpression of ALKBH5 reduced m6A modification and accelerated YMSC senescence. Conversely, ALKBH5 knockdown increased m6A modifications and alleviated AMSC senescence. Mechanistically, ALKBH5 regulated the m6A modification and stability of CDKN1C mRNA, which further upregulated CDKN1C expression, leading to MSC senescence. CDKN1C overexpression ameliorated the inhibition of cellular senescence of ALKBH5 siRNA-treated AMSCs. More importantly, compared with AMSCs, shALKBH5-AMSCs transplantation provided a superior cardioprotective effect against MI in mice by improving MSC survival and angiogenesis. We determined that ALKBH5 accelerated MSC senescence through m6A modification-dependent stabilization of the CDKN1C transcript, providing a potential target for MSC rejuvenation. ALKBH5 knockdown rejuvenated AMSCs and enhanced cardiac function when transplanted into the mouse heart following infarction.


Asunto(s)
Células Madre Mesenquimatosas , Infarto del Miocardio , Humanos , Animales , Ratones , Anciano , Regulación hacia Abajo , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Adenosina , Senescencia Celular , Factores Inmunológicos , ARN Mensajero , Desmetilasa de ARN, Homólogo 5 de AlkB/genética
10.
Blood Adv ; 7(22): 6801-6811, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37682792

RESUMEN

The primary analysis of MAGNOLIA, an open-label, single-arm, multicenter, phase 2 study, demonstrated that the next-generation Bruton tyrosine kinase (BTK) inhibitor zanubrutinib provided a high overall response rate (ORR) in patients with relapsed/refractory marginal zone lymphoma (R/R MZL), with a favorable safety/tolerability profile. Presented here, is the final analysis of MAGNOLIA, performed to characterize the durability of response and longer-term safety and tolerability. Zanubrutinib (160 mg twice daily) was evaluated in 68 patients with R/R MZL who had received at least 1 anti-CD20-directed regimen. The primary end point was independent review committee (IRC)-assessed ORR. Secondary end points included investigator-assessed ORR, duration of response (DOR), progression-free survival (PFS), overall survival (OS), health-related quality of life, safety, and tolerability. With a median follow-up of 27.4 months, the IRC-assessed ORR was 68.2% (95% confidence interval [CI], 55.6-79.1), with a 24-month DOR event-free rate of 72.9% (95% CI, 54.4-84.9). PFS and OS at 24 months were 70.9% (95% CI, 57.2-81.0) and 85.9% (95% CI, 74.7-92.4), respectively. The zanubrutinib safety profile was consistent with the primary analysis, with no new safety signals observed. Atrial fibrillation/flutter (n = 2 [2.9%]) and hypertension (n = 3 [4.4%]) were uncommon. Neutropenia (n = 8 [11.8%]) was the most common grade ≥3 adverse event. In this final analysis of MAGNOLIA, zanubrutinib demonstrated sustained clinical responses beyond 2 years, with 73% of responders alive and progression free. Zanubrutinib continued to demonstrate a favorable safety/tolerability profile with the additional time on treatment. This trial was registered at www.clinicaltrials.gov as #NCT03846427.


Asunto(s)
Linfoma de Células B de la Zona Marginal , Magnolia , Humanos , Linfoma de Células B de la Zona Marginal/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Calidad de Vida , Resultado del Tratamiento
11.
Clin Cancer Res ; 29(23): 4941-4948, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37738027

RESUMEN

PURPOSE: Patients with chronic lymphocytic leukemia (CLL) treated with ibrutinib are at risk of developing cardiovascular side effects (CVSE). The molecular determinants of CVSEs have not been fully elucidated. We interrogated genetic polymorphisms in the Bruton tyrosine kinase (BTK) signaling pathway for their association with ibrutinib-related CVSEs. EXPERIMENTAL DESIGN: We conducted a retrospective/prospective observational pharmacogenetic study of 50 patients with newly diagnosed or relapsed CLL who received ibrutinib at a starting daily dose of 420 mg for at least 6 months. CVSEs, primarily atrial fibrillation and hypertension, occurred in 10 patients (20%), of whom 4 discontinued therapy. DNA was isolated from buccal swabs of all 50 patients and genotyped for 40 SNPs in GATA4, SGK1, KCNQ1, KCNA4, NPPA, and SCN5A using a customized next-generation sequencing panel. Univariate and multivariate logistic regression analysis were performed to determine genetic and clinical factors associated with the incidence of ibrutinib-related CVSEs. RESULTS: GATA4 rs804280 AA (P = 0.043), KCNQ1 rs163182 GG (P = 0.036), and KCNQ1 rs2237895 AA (P = 0.023) genotypes were univariately associated with ibrutinib-related CVSEs. On the basis of multivariate analysis, a high genetic risk score, defined as the presence of at least two of these genotypes, was associated with 11.5-fold increased odds of CVSEs (P = 0.019; 95% confidence interval, 1.79-119.73). CONCLUSIONS: Our findings suggest possible genetic determinants of ibrutinib-related CVSEs in CLL. If replicated in a larger study, pretreatment pharmacogenetic testing for GATA4 and KCNQ1 polymorphisms may be a useful clinical tool for personalizing treatment selection for CLL and/or instituting early risk mitigation strategies.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Estudios Retrospectivos , Canal de Potasio KCNQ1 , Piperidinas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico
12.
Med ; 4(10): 728-743.e7, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37633269

RESUMEN

BACKGROUND: Identifying a metastasis-correlated immune cell composition within the tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) will help to develop promising and innovative therapeutic strategies. However, the dynamics of immune cell lineages in the TME of advanced PDAC remains elusive. METHODS: Twenty-six samples from 11 patients (including 11 primary tumor tissues, 10 blood, and 5 lymph nodes) with different stages were used to develop a multiscale immune profile. High-dimensional single-cell analysis with mass cytometry was performed to search for metastasis-correlated immune changes in the microenvironment. The findings were further validated by published single-cell RNA sequencing (scRNA-seq) data and multiplex fluorescent immunohistochemistry. FINDINGS: High-dimensional single-cell profiling revealed that the three immune-relevant sites formed a distinct immune atlas. Interestingly, the PDAC microenvironment with the potential for metastatic spread to the liver was characterized by a decreased proportion of CD103+PD-1+CD39+ T cells with cytotoxic and exhausted functional status and an increased proportion of CD73+ macrophages. Analysis of scRNA-seq data of PDAC further confirmed the identified subsets and revealed strong potential interactions via various ligand-receptor pairs between the identified T subsets and the macrophages. Moreover, stratified patients with different immune compositions correlated with clinical outcomes of PDAC. CONCLUSIONS: Our study uncovered metastasis-correlated immune changes, suggesting that ecosystem-based patient classification in PDAC will facilitate the identification of candidates likely to benefit from immunotherapy. FUNDING: This work was supported by the National Key Research and Development Program of China, the Shanghai International Science and Technology Collaboration Program, the Shanghai Sailing Program, and the Key Laboratory of diagnosis and treatment of severe hepato-pancreatic diseases of Zhejiang Province.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Ecosistema , China , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Microambiente Tumoral , Neoplasias Pancreáticas
13.
Genes Dis ; 10(5): 2137-2150, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37492709

RESUMEN

Aptamers, short single DNA or RNA oligonucleotides, have shown immense application potential as molecular probes for the early diagnosis and therapy of cancer. However, conventional cell-SELEX technologies for aptamer discovery are time-consuming and laborious. Here we discovered a new aptamer BC-3 by using an improved rapid X-Aptamer selection process for human bladder carcinoma, for which there is no specific molecular probe yet. We show that BC-3 exhibited excellent affinity in bladder cancer cells but not normal cells. We demonstrate that BC-3 displayed high selectivity for tumor cells over their normal counterparts in vitro, in mice, and in patient tumor tissue specimens. Further endocytosis pathway analysis revealed that BC-3 internalized into bladder cancer cells via clathrin-mediated endocytosis. Importantly, we identified ribosomal protein S7 (RPS7) as the binding target of BC-3 via an integrated methodology (mass spectrometry, colocalization assay, and immunoblotting). Together, we report that a novel aptamer BC-3 is discovered for bladder cancer and its properties in the disease are unearthed. Our findings will facilitate the discovery of novel diagnostic and therapeutic strategies for bladder cancer.

14.
Cell Rep ; 42(7): 112666, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37347667

RESUMEN

Protein lysine crotonylation has been recently identified as a vital posttranslational modification in cellular processes, particularly through the modification of histones. We show that lysine crotonylation is an important modification of the cytoplastic and mitochondria proteins. Enzymes in glycolysis, the tricarboxylic acid (TCA) cycle, fatty acid metabolism, glutamine metabolism, glutathione metabolism, the urea cycle, one-carbon metabolism, and mitochondrial fusion/fission dynamics are found to be extensively crotonylated in pancreatic cancer cells. This modulation is mainly controlled by a pair of crotonylation writers and erasers including CBP/p300, HDAC1, and HDAC3. The dynamic crotonylation of metabolic enzymes is involved in metabolism regulation, which is linked with tumor progression. Interestingly, the activation of MTHFD1 by decrotonylation at Lys354 and Lys553 promotes the development of pancreatic cancer by increasing resistance to ferroptosis. Our study suggests that crotonylation represents a metabolic regulatory mechanism in pancreatic cancer progression.


Asunto(s)
Lisina , Neoplasias Pancreáticas , Humanos , Lisina/metabolismo , Histonas/metabolismo , Glucólisis , Procesamiento Proteico-Postraduccional
15.
Adv Healthc Mater ; 12(20): e2300791, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37262080

RESUMEN

Bladder cancer (BC) is a highly aggressive malignant tumor affecting the urinary system, characterized by metastasis and a poor prognosis that often leads to limited therapeutic success. This study aims to develop a novel DNA aptamer for the diagnosis and treatment of BC using a tissue-based systematic evolution of ligands by an exponential enrichment (SELEX) process. By using SELEX, this work successfully generates a new aptamer named TB-5, which demonstrates a remarkable and specific affinity for nucleolin (NCL) in BC tissues and displays marked biocompatibility both in vitro and in vivo. Additionally, this work shows that NCL is a reliable tissue-specific biomarker in BC. Moreover, according to circular dichroism spectroscopy, TB-5 forms a non-G-quadruplex structure, distinguishing it from the current NCL-targeting aptamer AS1411, and exhibits a distinct binding region on NCL compared to AS1411. Notably, this study further reveals that TB-5 activates NCL function by promoting autophagy and suppressing the migration and invasion of BC cells, which occurs by disrupting mRNA transcription processes. These findings highlight the critical role of NCL in the pathological examination of BC and warrant more comprehensive investigations on anti-NCL aptamers in BC imaging and treatment.


Asunto(s)
Aptámeros de Nucleótidos , G-Cuádruplex , Neoplasias de la Vejiga Urinaria , Humanos , Aptámeros de Nucleótidos/uso terapéutico , Aptámeros de Nucleótidos/química , Fosfoproteínas/metabolismo , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Nucleolina
16.
BMC Cancer ; 23(1): 331, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041472

RESUMEN

BACKGROUND: As a potential target receptor tyrosine kinase, mesenchymal-epithelial transition factor (MET) exhibits high aberrant expression across various tumors. This study aimed to evaluated the safety, tolerability, efficacy and pharmacokinetics (PK) of BPI-9016M, a novel tyrosine kinase inhibitor (TKI) targeting c-MET, in c-MET overexpression or MET exon 14 skipping mutation patients with locally advanced or metastatic non-small-cell lung cancer (NSCLC). METHODS/DESIGN: In this two-part multicenter phase Ib study, eligible patients with locally advanced or metastatic NSCLC harboring c-MET overexpression or MET exon 14 skipping mutation were enrolled into Part A (tested positive for c-MET overexpression [immunohistochemical staining score ≥ 2+]; 300 mg quaque die [QD], 450 mg QD and 600 mg QD cohorts) or Part B (tested positive for MET exon 14 skipping mutation; 400 mg bis in die [BID] cohort), respectively. The primary endpoints were safety, objective response rate (ORR) and disease control rate (DCR), the second endpoints were PK parameters, progression-free survival (PFS) and overall survival (OS). RESULTS: Between March 15, 2017 and September 18, 2021, 38 patients were enrolled (Part A, n = 34; Part B, n = 4). Of 38 patients, 32 (84.2%) patients completed the treatment protocol. As of the data cut-off date on January 27, 2022, all patients reported at least one treatment-emergent adverse event (TEAE). Ninety-two point one percent (35/38) of patients experienced treatment-related adverse events (TRAEs), and grade ≥ 3 TRAEs were observed in 11 (28.9%) patients. The most common TRAEs were elevated alanine aminotransferase (ALT, 14/38, 36.8%) and elevated aspartate aminotransferase (AST, 11/38, 28.9%). Only one (2.6%) patient had treatment-related serious adverse event (SAE) in 600 mg QD cohort due to thrombocytopenia. PK analysis showed BPI-9016M and its main metabolites (M1 and M2-2) reached steady state after seven days of continuous administration. At the dose of 300 mg QD and 450 mg QD, the exposure of BPI-9016M increased with increasing dose. Exposure of BPI-9016M was similar at 450 mg QD and 600 mg QD, which may exhibit a saturation trend. In all patients, ORR and DCR were 2.6% (1/38, 95% confidence interval [CI] 0.1-13.8%) and 42.1% (16/38, 95% CI 26.3-59.2%), respectively. Only one partial response (PR) patient was observed at a dose of 600 mg QD in Part A. In Part B, DCR was 75.0% (3/4, 95% CI 19.4-99.4%). The median PFS and OS in all 38 patients were 1.9 months (95% CI 1.9-3.7) and 10.3 months (95% CI 7.3-not evaluable [NE]), respectively. CONCLUSION: BPI-9016M showed manageable safety profile in c-MET overexpression or MET exon 14 skipping mutation patients with locally advanced or metastatic NSCLC, but showed limited efficacy. TRIAL REGISTRATION: Clinicaltrials.gov NCT02929290 (11/10/2016).


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas c-met/genética , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Exones
17.
J Math Biol ; 86(1): 19, 2023 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-36609586

RESUMEN

A considerable number of research works has been devoted to the study of tumor models. Several biophysical factors, such as cell proliferation, apoptosis, chemotaxis, angiogenesis and necrosis, have been discovered to have an impact on the complicated biological system of tumors. An indicator of the aggressiveness of tumor development is the instability of the shape of the tumor boundary. Complex patterns of tumor morphology have been explored in Lu et al. (J Comput Phys 459:111153, 2022). In this paper, we continue to carry out a bifurcation analysis on such a vascular tumor model with a controlled necrotic core and chemotaxis. This bifurcation analysis, to the parameter of cell proliferation, is built on the explicit formulas of radially symmetric steady-state solutions. By perturbing the tumor free boundary and establishing rigorous estimates of the free boundary system, we prove the existence of the bifurcation branches with Crandall-Rabinowitz theorem. The parameter of chemotaxis is found to influence the monotonicity of the bifurcation point as the mode l increases both theoretically and numerically.


Asunto(s)
Neoplasias Vasculares , Humanos , Quimiotaxis , Modelos Biológicos , Modelos Teóricos , Necrosis
18.
J Math Biol ; 85(5): 58, 2022 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-36271960

RESUMEN

Atherosclerosis, one of the leading causes of death in USA and worldwide, begins with a lesion in the intima of the arterial wall, allowing LDL to penetrate into the intima where they are oxidized. The immune system considers these oxidized LDL as a dangerous substance and tasks the macrophages to attack them; incapacitated macrophages become foam cells and leads to the formation of a plaque. As the plaque continues to grow, it progressively restricts the blood flow, possibly triggering heart attack or stroke. Because the blood vessels tend to be circular, two-space dimensional cross section model is a good approximation, and the two-space dimensional models are studied in Friedman et al. (J Differ Equ 259(4):1227-1255, 2015) and Zhao and Hu (J Differ Equ 288:250-287, 2021). It is interesting to see whether a true three-space dimensional stationary solution can be developed. We shall establish a three-space dimensional stationary solution for the mathematical model of the initiation and development of atherosclerosis which involves LDL and HDL cholesterols, macrophages and foam cells. The model is a highly nonlinear and coupled system of PDEs with a free boundary, the interface between the plaque and the blood flow. We establish infinite branches of symmetry-breaking stationary solutions which bifurcate from the annular stationary solution in the longitude direction.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/patología , Células Espumosas/patología , Células Espumosas/fisiología , Macrófagos/patología , Arterias
19.
Stem Cells Int ; 2022: 3742678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35355588

RESUMEN

Although mesenchymal stem cell- (MSC-) based therapy has shown promising results for myocardial infarction (MI), low cell survival heavily limits its beneficial effects. Apelin plays an essential regulatory role in cell proliferation. This study was aimed at determining whether Apelin-13 pretreatment could improve the survival of MSCs in the ischemic heart and enhance their cardioprotective efficacy against MI. MSCs were pretreated with or without Apelin-13 for 24 hours and then exposed to serum deprivation and hypoxia (SD/H) for 48 hours. The mitochondrial morphology of MSCs was assessed by MitoTracker staining. The apoptosis of MSCs was determined by TUNEL staining. The level of mitochondrial reactive oxygen species (ROS) of MSCs was detected by Mito-Sox staining. MSCs and Apelin-13-pretreated MSCs were transplanted into the peri-infarct region in a mouse MI model. Apelin-13 pretreatment protected MSCs against SD/H-induced mitochondrial fragmentation and apoptosis. Apelin-13 pretreatment reduced ROS generation induced by SD/H in MSCs. Furthermore, Apelin-13 pretreatment enhanced the angiogenesis of MSCs under SD/H conditions. Mechanistically, Apelin-13 pretreatment inhibited SD/H-induced MSC apoptosis by downregulating mitochondrial fission via activation of the ERK pathway, and these effects were partially abrogated by ERK inhibitor U0126. Apelin-13 pretreatment promoted the survival of MSCs in the ischemic heart. Moreover, transplantation with Apelin-13-pretreated MSCs improved heart function and increased angiogenesis accompanied by decreased fibrosis compared with MSC transplantation at 28 days following MI. These findings reveal that pretreatment with Apelin-13 improves MSCs survival and enhances their therapeutic efficacy for MI. Our study provides a novel approach to improve MSC-based therapy for cardiovascular disease.

20.
Environ Toxicol ; 37(5): 1093-1103, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35061333

RESUMEN

Exposure to nickel oxide nanoparticles (NiONPs), which have been widely produced and applied in industry, leads to adverse pulmonary and systemic effects. The aim of this study is to investigate the involvement of apoptosis and ferroptosis in NiONPs-induced acute lung injury (ALI). Intratracheal instillation of NiONPs into mice elevated the levels of pro-inflammatory cytokines, neutrophils, and proteins in the bronchoalveolar lavage fluid, and triggered apoptosis and ferroptosis in the lung tissues. Consistently, NiONPs-induced apoptosis and ferroptosis were observed in in vitro experiments using human lung epithelial cells. Activating transcription factor 3 (ATF3), a stress-inducible transcription factor, was upregulated by NiONPs exposure in both murine lung tissues and human lung epithelial cells. Moreover, human lung epithelial cells with ATF3 deficiency exhibited a lower level of apoptosis and ferroptosis when exposed to NiONPs. Collectively, our findings demonstrated that ATF3 was responsive to NiONPs exposure, and promoted NiONPs-induced apoptosis and ferroptosis in lung epithelial cells, indicating that ATF3 is a potential biomarker and therapeutic target for NiONPs-associated ALI.


Asunto(s)
Ferroptosis , Nanopartículas , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Factor de Transcripción Activador 3/farmacología , Animales , Apoptosis , Células Epiteliales , Ratones , Nanopartículas/toxicidad , Níquel/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA