Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
J Transl Med ; 22(1): 226, 2024 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-38429796

RESUMEN

BACKGROUND: Breast Cancer (BC) is a highly heterogeneous and complex disease. Personalized treatment options require the integration of multi-omic data and consideration of phenotypic variability. Radiogenomics aims to merge medical images with genomic measurements but encounter challenges due to unpaired data consisting of imaging, genomic, or clinical outcome data. In this study, we propose the utilization of a well-trained conditional generative adversarial network (cGAN) to address the unpaired data issue in radiogenomic analysis of BC. The generated images will then be used to predict the mutations status of key driver genes and BC subtypes. METHODS: We integrated the paired MRI and multi-omic (mRNA gene expression, DNA methylation, and copy number variation) profiles of 61 BC patients from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA). To facilitate this integration, we employed a Bayesian Tensor Factorization approach to factorize the multi-omic data into 17 latent features. Subsequently, a cGAN model was trained based on the matched side-view patient MRIs and their corresponding latent features to predict MRIs for BC patients who lack MRIs. Model performance was evaluated by calculating the distance between real and generated images using the Fréchet Inception Distance (FID) metric. BC subtype and mutation status of driver genes were obtained from the cBioPortal platform, where 3 genes were selected based on the number of mutated patients. A convolutional neural network (CNN) was constructed and trained using the generated MRIs for mutation status prediction. Receiver operating characteristic area under curve (ROC-AUC) and precision-recall area under curve (PR-AUC) were used to evaluate the performance of the CNN models for mutation status prediction. Precision, recall and F1 score were used to evaluate the performance of the CNN model in subtype classification. RESULTS: The FID of the images from the well-trained cGAN model based on the test set is 1.31. The CNN for TP53, PIK3CA, and CDH1 mutation prediction yielded ROC-AUC values 0.9508, 0.7515, and 0.8136 and PR-AUC are 0.9009, 0.7184, and 0.5007, respectively for the three genes. Multi-class subtype prediction achieved precision, recall and F1 scores of 0.8444, 0.8435 and 0.8336 respectively. The source code and related data implemented the algorithms can be found in the project GitHub at https://github.com/mattthuang/BC_RadiogenomicGAN . CONCLUSION: Our study establishes cGAN as a viable tool for generating synthetic BC MRIs for mutation status prediction and subtype classification to better characterize the heterogeneity of BC in patients. The synthetic images also have the potential to significantly augment existing MRI data and circumvent issues surrounding data sharing and patient privacy for future BC machine learning studies.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/genética , Radiómica , Variaciones en el Número de Copia de ADN , Teorema de Bayes , Imagen por Resonancia Magnética/métodos , Mutación/genética
2.
Comput Struct Biotechnol J ; 21: 2940-2949, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37216014

RESUMEN

Background: Human epidermal growth receptor 2-positive (HER2+) breast cancer (BC) is a heterogeneous subgroup. Estrogen receptor (ER) status is emerging as a predictive marker within HER2+ BCs, with the HER2+/ER+ cases usually having better survival in the first 5 years after diagnosis but have higher recurrence risk after 5 years compared to HER2+/ER-. This is possibly because sustained ER signaling in HER2+ BCs helps escape the HER2 blockade. Currently HER2+/ER+ BC is understudied and lacks biomarkers. Thus, a better understanding of the underlying molecular diversity is important to find new therapy targets for HER2+/ER+ BCs. Methods: In this study, we performed unsupervised consensus clustering together with genome-wide Cox regression analyses on the gene expression data of 123 HER2+/ER+ BC from The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) cohort to identify distinct HER2+/ER+ subgroups. A supervised eXtreme Gradient Boosting (XGBoost) classifier was then built in TCGA using the identified subgroups and validated in another two independent datasets (Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and Gene Expression Omnibus (GEO) (accession number GSE149283)). Computational characterization analyses were also performed on the predicted subgroups in different HER2+/ER+ BC cohorts. Results: We identified two distinct HER2+/ER+ subgroups with different survival outcomes using the expression profiles of 549 survival-associated genes from the Cox regression analyses. Genome-wide gene expression differential analyses found 197 differentially expressed genes between the two identified subgroups, with 15 genes overlapping the 549 survival-associated genes.XGBoost classifier, using the expression values of the 15 genes, achieved a strong cross-validated performance (Area under the curve (AUC) = 0.85, Sensitivity = 0.76, specificity = 0.77) in predicting the subgroup labels. Further investigation partially confirmed the differences in survival, drug response, tumor-infiltrating lymphocytes, published gene signatures, and CRISPR-Cas9 knockout screened gene dependency scores between the two identified subgroups. Conclusion: This is the first study to stratify HER2+/ER+ tumors. Overall, the initial results from different cohorts showed there exist two distinct subgroups in HER2+/ER+ tumors, which can be distinguished by a 15-gene signature. Our findings could potentially guide the development of future precision therapies targeted on HER2+/ER+ BC.

3.
Nat Commun ; 14(1): 688, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755019

RESUMEN

A proper understanding of disease etiology will require longitudinal systems-scale reconstruction of the multitiered architecture of eukaryotic signaling. Here we combine state-of-the-art data acquisition platforms and bioinformatics tools to devise PAMAF, a workflow that simultaneously examines twelve omics modalities, i.e., protein abundance from whole-cells, nucleus, exosomes, secretome and membrane; N-glycosylation, phosphorylation; metabolites; mRNA, miRNA; and, in parallel, single-cell transcriptomes. We apply PAMAF in an established in vitro model of TGFß-induced epithelial to mesenchymal transition (EMT) to quantify >61,000 molecules from 12 omics and 10 timepoints over 12 days. Bioinformatics analysis of this EMT-ExMap resource allowed us to identify; -topological coupling between omics, -four distinct cell states during EMT, -omics-specific kinetic paths, -stage-specific multi-omics characteristics, -distinct regulatory classes of genes, -ligand-receptor mediated intercellular crosstalk by integrating scRNAseq and subcellular proteomics, and -combinatorial drug targets (e.g., Hedgehog signaling and CAMK-II) to inhibit EMT, which we validate using a 3D mammary duct-on-a-chip platform. Overall, this study provides a resource on TGFß signaling and EMT.


Asunto(s)
Transición Epitelial-Mesenquimal , Proteínas Hedgehog , Transición Epitelial-Mesenquimal/genética , Proteínas Hedgehog/metabolismo , Células Epiteliales/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
4.
Biomark Res ; 11(1): 9, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36694221

RESUMEN

BACKGROUND: It has been believed that traditional handcrafted radiomic features extracted from magnetic resonance imaging (MRI) of tumors are normally shallow and low-ordered. Recent advancement in deep learning technology shows that the high-order deep radiomic features extracted automatically from tumor images can capture tumor heterogeneity in a more efficient way. We hypothesize that MRI-based deep radiomic phenotypes have significant associations with molecular profiles of breast cancer tumors. We aim to identify deep radiomic features (DRFs) from MRI, evaluate their significance in predicting breast cancer (BC) clinical characteristics and explore their associations with multi-level genomic factors. METHODS: A denoising autoencoder was built to retrospectively extract 4,096 DRFs from 110 BC patients' MRI. Visualization and clustering were applied to these DRFs. Linear Mixed Effect models were used to test their associations with multi-level genomic features (GFs) (risk genes, gene signatures, and biological pathway activities) extracted from the same patients' mRNA expression profile. A Least Absolute Shrinkage and Selection Operator model was used to identify the most predictive DRFs for each clinical characteristic (tumor size (T), lymph node metastasis (N), estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status). RESULTS: Thirty-six conventional radiomic features (CRFs) for 87 of the 110 BC patients provided by a previous study were used for comparison. More than 1,000 DRFs were associated with the risk genes, gene signatures, and biological pathways activities (adjusted P-value < 0.05). DRFs produced better performance in predicting T, N, ER, PR, and HER2 status (AUC > 0.9) using DRFs. These DRFs showed significant powers of stratifying patients, linking to relevant biological and clinical characteristics. As a contrast, only eight risk genes were associated with CRFs. The RFs performed worse in predicting clinical characteristics than DRFs. CONCLUSIONS: The deep learning-based auto MRI features perform better in predicting BC clinical characteristics, which are more significantly associated with GFs than traditional semi-auto MRI features. Our radiogenomic approach for identifying MRI-based imaging signatures may pave potential pathways for the discovery of genetic mechanisms regulating specific tumor phenotypes and may enable a more rapid innovation of novel imaging modalities, hence accelerating their translation to personalized medicine.

5.
Pharmacogenomics J ; 23(4): 61-72, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36424525

RESUMEN

Our previous studies demonstrated that the FOXM1 pathway is upregulated and the PPARA pathway downregulated in breast cancer (BC), and especially in the triple negative breast cancer (TNBC) subtype. Targeting the two pathways may offer potential therapeutic strategies to treat BC, especially TNBC which has the fewest effective therapies available among all BC subtypes. In this study we identified small molecule compounds that could modulate the PPARA and FOXM1 pathways in BC using two methods. In the first method, data were initially curated from the Connectivity Map (CMAP) database, which provides the gene expression profiles of MCF7 cells treated with different compounds as well as paired controls. We then calculated the changes in the FOXM1 and PPARA pathway activities from the compound-induced gene expression profiles under each treatment to identify compounds that produced a decreased activity in the FOXM1 pathway or an increased activity in the PPARA pathway. In the second method, the CMAP database tool was used to identify compounds that could reverse the expression pattern of the two pathways in MCF7 cells. Compounds identified as repressing the FOXM1 pathway or activating the PPARA pathway by the two methods were compared. We identified 19 common compounds that could decrease the FOXM1 pathway activity scores and reverse the FOXM1 pathway expression pattern, and 13 common compounds that could increase the PPARA pathway activity scores and reverse the PPARA pathway expression pattern. It may be of interest to validate these compounds experimentally to further investigate their effects on TNBCs.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Células MCF-7 , Biología Computacional , PPAR alfa/genética , Regulación Neoplásica de la Expresión Génica
6.
Cancer Med ; 12(5): 6117-6128, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36281472

RESUMEN

INTRODUCTION: Analyzing longitudinal cancer quality-of-life (QoL) measurements and their impact on clinical outcomes may improve our understanding of patient trajectories during systemic therapy. We applied an unsupervised growth mixture modeling (GMM) approach to identify unobserved subpopulations ("patient clusters") in the CO.20 clinical trial longitudinal QoL data. Classes were then evaluated for differences in clinico-epidemiologic characteristics and overall survival (OS). METHODS AND MATERIALS: In CO.20, 750 chemotherapy-refractory metastatic colorectal cancer (CRC) patients were randomized to receive Brivanib+Cetuximab (n = 376, experimental arm) versus Cetuximab+Placebo (n = 374, standard arm) for 16 weeks. EORTC-QLQ-C30 QoL summary scores were calculated for each patient at seven time points, and GMM was applied to identify patient clusters (termed "classes"). Log-rank/Kaplan-Meier and multivariable Cox regression analyses were conducted to analyze the survival performance between classes. Cox analyses were used to explore the relationship between baseline QoL, individual slope, and the quadratic terms from the GMM output with OS. RESULTS: In univariable analysis, the linear mixed effect model (LMM) identified sex and ECOG Performance Status as strongly associated with the longitudinal QoL score (p < 0.01). The patients within each treatment arm were clustered into three distinct QoL-based classes by GMM, respectively. The three classes identified in the experimental (log-rank p-value = 0.00058) and in the control arms (p < 0.0001) each showed significantly different survival performance. The GMM's baseline, slope, and quadratic terms were each significantly associated with OS (p < 0.001). CONCLUSION: GMM can be used to analyze longitudinal QoL data in cancer studies, by identifying unobserved subpopulations (patient clusters). As demonstrated by CO.20 data, these classes can have important implications, including clinical prognostication.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Calidad de Vida , Humanos , Cetuximab/uso terapéutico , Análisis por Conglomerados , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
7.
Genomics ; 114(5): 110474, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36057424

RESUMEN

BACKGROUND: It has become increasingly important to identify molecular markers for accurately diagnosing prostate cancer (PCa) stages between localized PCa (LPC) and locally advanced PCa (LAPC). However, there is a lack of profiling both epigenome-wide DNA methylation and transcriptome for the same patients with PCa at different stages. This study aims to identify epitranscriptomic biomarkers screened in the peri-prostatic (PP) adipose tissue for predicting LPC and LAPC. METHODS: We profiled gene expression and DNA methylation of 10 PCa patients' PP adipose tissue (4 LPC and 6 LAPC). Differential analysis was used to identify differentially methylated CpG sites and expressed genes. An integrative analysis of the microarray gene expression profiles and DNA methylation profiles was conducted using LASSO (least absolute shrinkage and selection operator) between each studied gene and the CpG sites in their promoter region. This epitranscriptomic signature was constructed by combining the association and differential analyses. The signature was then refined using the genetic mutation data of >1500 primary PCa and metastasis PCa samples from 4 different studies. We determined genes that were the most significantly affected by mutations. Machine learning models were built to evaluate the classification ability of the identified signature using the gene expression profiles from three external cohorts. RESULTS: From the LASSO-based association analysis, we identified 56 genes presenting significant anti-correlation between the expression level and the methylation level of at least one CpG site in the promoter region (p-value<5 × 10-8). From the differential analysis, we detected 16,405 downregulated genes and 9485 genes containing at least one hypermethylated CpG site. We identified 30 genes that showed anti-correlation, down-regulation and hyper-methylation simultaneously. Using genetic mutation data, we determined that 6 of the 30 genes showed significant differences (adjusted p-value<0.05) in mutation frequencies between the primary PCa and metastasis PCa samples. The identified 30 genes performed well in distinguishing PCa patients with metastasis from PCa patient without metastasis (area under the receiver operating characteristic curve (AUC) = 0.81). The gene signature also performed well in distinguishing PCa patients with high risk of progression from PCa patients with low risk of progression (AUC = 0.88). CONCLUSIONS: We established an integrative framework to identify differentially expressed genes with an aberrant methylation pattern on PP adipose tissue that may represent novel candidate molecular markers for distinguishing between LPC and LAPC.


Asunto(s)
Metilación de ADN , Neoplasias de la Próstata , Biomarcadores/metabolismo , Islas de CpG , Epigenoma , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Regiones Promotoras Genéticas , Neoplasias de la Próstata/metabolismo , Transcriptoma
8.
Front Oncol ; 12: 879607, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814415

RESUMEN

Proper analysis of high-dimensional human genomic data is necessary to increase human knowledge about fundamental biological questions such as disease associations and drug sensitivity. However, such data contain sensitive private information about individuals and can be used to identify an individual (i.e., privacy violation) uniquely. Therefore, raw genomic datasets cannot be publicly published or shared with researchers. The recent success of deep learning (DL) in diverse problems proved its suitability for analyzing the high volume of high-dimensional genomic data. Still, DL-based models leak information about the training samples. To overcome this challenge, we can incorporate differential privacy mechanisms into the DL analysis framework as differential privacy can protect individuals' privacy. We proposed a differential privacy based DL framework to solve two biological problems: breast cancer status (BCS) and cancer type (CT) classification, and drug sensitivity prediction. To predict BCS and CT using genomic data, we built a differential private (DP) deep autoencoder (dpAE) using private gene expression datasets that performs low-dimensional data representation learning. We used dpAE features to build multiple DP binary classifiers to predict BCS and CT in any individual. To predict drug sensitivity, we used the Genomics of Drug Sensitivity in Cancer (GDSC) dataset. We extracted GDSC's dpAE features to build our DP drug sensitivity prediction model for 265 drugs. Evaluation of our proposed DP framework shows that it achieves improved prediction performance in predicting BCS, CT, and drug sensitivity than the previously published DP work.

9.
Comput Struct Biotechnol J ; 20: 2484-2494, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664228

RESUMEN

In precise medicine, it is with great value to develop computational frameworks for identifying prognostic biomarkers which can capture both multi-genomic and phenotypic heterogeneity of breast cancer (BC). Radiogenomics is a field where medical images and genomic measurements are integrated and mined to solve challenging clinical problems. Previous radiogenomic studies suffered from data incompleteness, feature subjectivity and low interpretability. For example, the majority of the radiogenomic studies miss one or two of medical imaging data, genomic data, and clinical outcome data, which results in the data incomplete issue. Feature subjectivity issue comes from the extraction of imaging features with significant human involvement. Thus, there is an urgent need to address above-mentioned limitations so that fully automatic and transparent radiogenomic prognostic biomarkers could be identified for BC. We proposed a novel framework for BC prognostic radiogenomic biomarker identification. This framework involves an explainable DL model for image feature extraction, a Bayesian tensor factorization (BTF) processing for multi-genomic feature extraction, a leverage strategy to utilize unpaired imaging, genomic, and survival outcome data, and a mediation analysis to provide further interpretation for identified biomarkers. This work provided a new perspective for conducting a comprehensive radiogenomic study when only limited resources are given. Compared with baseline traditional radiogenomic biomarkers, the 23 biomarkers identified by the proposed framework performed better in indicating patients' survival outcome. And their interpretability is guaranteed by different levels of build-in and follow-up analyses.

10.
Comput Methods Programs Biomed ; 221: 106903, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35636358

RESUMEN

BACKGROUND AND OBJECTIVE: Both mass detection and segmentation in digital mammograms play a crucial role in early breast cancer detection and treatment. Furthermore, clinical experience has shown that they are the upstream tasks of pathological classification of breast lesions. Recent advancements in deep learning have made the analyses faster and more accurate. This study aims to develop a deep learning model architecture for breast cancer mass detection and segmentation using the mammography. METHODS: In this work we proposed a double shot model for mass detection and segmentation simultaneously using a combination of YOLO (You Only Look Once) and LOGO (Local-Global) architectures. Firstly, we adopted YoloV5L6, the state-of-the-art object detection model, to position and crop the breast mass in mammograms with a high resolution; Secondly, to balance training efficiency and segmentation performance, we modified the LOGO training strategy to train the whole images and cropped images on the global and local transformer branches separately. The two branches were then merged to form the final segmentation decision. RESULTS: The proposed YOLO-LOGO model was tested on two independent mammography datasets (CBIS-DDSM and INBreast). The proposed model performs significantly better than previous works. It achieves true positive rate 95.7% and mean average precision 65.0% for mass detection on CBIS-DDSM dataset. Its performance for mass segmentation on CBIS-DDSM dataset is F1-score=74.5% and IoU=64.0%. The similar performance trend is observed in another independent dataset INBreast as well. CONCLUSIONS: The proposed model has a higher efficiency and better performance, reduces computational requirements, and improves the versatility and accuracy of computer-aided breast cancer diagnosis. Hence it has the potential to enable more assistance for doctors in early breast cancer detection and treatment, thereby reducing mortality.


Asunto(s)
Neoplasias de la Mama , Redes Neurales de la Computación , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Diagnóstico por Computador , Femenino , Humanos , Mamografía/métodos
11.
Bioinformatics ; 38(12): 3259-3266, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35445698

RESUMEN

MOTIVATION: Multiomics cancer profiles provide essential signals for predicting cancer survival. It is challenging to reveal the complex patterns from multiple types of data and link them to survival outcomes. We aim to develop a new deep learning-based algorithm to integrate three types of high-dimensional omics data measured on the same individuals to improve cancer survival outcome prediction. RESULTS: We built a three-dimension tensor to integrate multi-omics cancer data and factorized it into two-dimension matrices of latent factors, which were fed into neural networks-based survival networks. The new algorithm and other multi-omics-based algorithms, as well as individual genomic-based survival analysis algorithms, were applied to the breast cancer data colon and rectal cancer data from The Cancer Genome Atlas (TCGA) program. We evaluated the goodness-of-fit using the concordance index (C-index) and Integrated Brier Score (IBS). We demonstrated that the proposed tight integration framework has better survival prediction performance than the models using individual genomic data and other conventional data integration methods. AVAILABILITY AND IMPLEMENTATION: https://github.com/jasperzyzhang/DeepTensorSurvival. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Neoplasias de la Mama , Genómica , Humanos , Femenino , Genómica/métodos , Algoritmos , Genoma , Redes Neurales de la Computación , Neoplasias de la Mama/genética
12.
BMC Public Health ; 22(1): 701, 2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35397596

RESUMEN

BACKGROUND: Diagnosis codes in administrative health data are routinely used to monitor trends in disease prevalence and incidence. The International Classification of Diseases (ICD), which is used to record these diagnoses, have been updated multiple times to reflect advances in health and medical research. Our objective was to examine the impact of transitions between ICD versions on the prevalence of chronic health conditions estimated from administrative health data. METHODS: Study data (i.e., physician billing claims, hospital records) were from the province of Manitoba, Canada, which has a universal healthcare system. ICDA-8 (with adaptations), ICD-9-CM (clinical modification), and ICD-10-CA (Canadian adaptation; hospital records only) codes are captured in the data. Annual study cohorts included all individuals 18 + years of age for 45 years from 1974 to 2018. Negative binomial regression was used to estimate annual age- and sex-adjusted prevalence and model parameters (i.e., slopes and intercepts) for 16 chronic health conditions. Statistical control charts were used to assess the impact of changes in ICD version on model parameter estimates. Hotelling's T2 statistic was used to combine the parameter estimates and provide an out-of-control signal when its value was above a pre-specified control limit. RESULTS: The annual cohort sizes ranged from 360,341 to 824,816. Hypertension and skin cancer were among the most and least diagnosed health conditions, respectively; their prevalence per 1,000 population increased from 40.5 to 223.6 and from 0.3 to 2.1, respectively, within the study period. The average annual rate of change in prevalence ranged from -1.6% (95% confidence interval [CI]: -1.8, -1.4) for acute myocardial infarction to 14.6% (95% CI: 13.9, 15.2) for hypertension. The control chart indicated out-of-control observations when transitioning from ICDA-8 to ICD-9-CM for 75% of the investigated chronic health conditions but no out-of-control observations when transitioning from ICD-9-CM to ICD-10-CA. CONCLUSIONS: The prevalence of most of the investigated chronic health conditions changed significantly in the transition from ICDA-8 to ICD-9-CM. These results point to the importance of considering changes in ICD coding as a factor that may influence the interpretation of trend estimates for chronic health conditions derived from administrative health data.


Asunto(s)
Hipertensión , Clasificación Internacional de Enfermedades , Canadá , Enfermedad Crónica , Bases de Datos Factuales , Humanos , Persona de Mediana Edad , Prevalencia
13.
Curr Opin Chem Biol ; 66: 102111, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34999476

RESUMEN

Radiogenomics is a field where medical images and genomic profiles are jointly analyzed to answer critical clinical questions. Specifically, people want to identify non-invasive imaging biomarkers that are associated with both genomic features and clinical outcomes. Deep learning is an advanced computer science technique that has been applied in many fields, including medical image and genomic data analysis. This review summarizes the current state of deep learning in pan-cancer radiogenomic research, discusses its limitations, and indicates the potential future directions. Traditional machine learning in radiomics, genomics, and radiogenomics have also been briefly discussed. We also summarize the main pan-cancer radiogenomic research resources. Two characteristics of deep learning are emphasized when discussing its application to pan-cancer radiogenomics, which are extendibility and explainability.


Asunto(s)
Aprendizaje Profundo , Neoplasias , Diagnóstico por Imagen , Genómica , Humanos , Aprendizaje Automático , Neoplasias/diagnóstico por imagen , Neoplasias/genética
14.
J Cachexia Sarcopenia Muscle ; 13(2): 1262-1276, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35092190

RESUMEN

BACKGROUND: Intensive care unit (ICU)-acquired weakness is characterized by muscle atrophy and impaired contractility that may persist after ICU discharge. Dysregulated muscle repair and regeneration gene co-expression networks are present in critical illness survivors with persistent muscle wasting and weakness. We aimed to identify microRNAs (miRs) regulating the gene networks and determine their role in the self-renewal of muscle in ICU survivors. METHODS: Muscle whole-transcriptome expression was assessed with microarrays in banked quadriceps biopsies obtained at 7 days and 6 months post-ICU discharge from critically ill patients (n = 15) in the RECOVER programme and healthy individuals (n = 8). We conducted an integrated miR-messenger RNA analysis to identify miR/gene pairs associated with muscle recovery post-critical illness and evaluated their impact on myoblast proliferation and differentiation in human AB1167 and murine C2C12 cell lines in vitro. Select target genes were validated with quantitative PCR. RESULTS: Twenty-two miRs were predicted to regulate the Day 7 post-ICU muscle transcriptome vs. controls. Thirty per cent of all differentially expressed genes shared a 3'UTR regulatory sequence for miR-424-3p/5p, which was 10-fold down-regulated in patients (P < 0.001) and correlated with quadriceps size (R = 0.86, P < 0.001), strength (R = 0.75, P = 0.007), and physical function (Functional Independence Measures motor subscore, R = 0.92, P < 0.001) suggesting its potential role as a master regulator of early recovery of muscle mass and strength following ICU discharge. Network analysis demonstrated enrichment for cellular respiration and muscle fate commitment/development related genes. At 6 months post-ICU discharge, a 14-miR expression signature, including miRs-490-3p and -744-5p, identified patients with muscle mass recovery vs. those with sustained atrophy. Constitutive overexpression of the novel miR-490-3p significantly inhibited AB1167 and C2C12 myoblast proliferation (cell count AB1167 miR-490-3p mimic or scrambled-miR transfected myoblasts 7926 ± 4060 vs. 14 159 ± 3515 respectively, P = 0.006; proportion Ki67-positive nuclei AB1167 miR-490-3p mimic or scrambled-miR transfected myoblasts 0.38 ± 0.07 vs. 0.54 ± 0.06 respectively, P < 0.001; proliferating cell nuclear antigen expression AB1167 miR-490-3p mimic or scrambled-miR transfected myoblasts 11.48 ± 1.97 vs. 16.75 ± 1.19 respectively, P = 0.040). Constitutive overexpression of miR-744-5p, a known regulator of myogenesis, significantly inhibited AB1167 and C2C12 myoblast differentiation (fusion index AB1167 miR-744-5p mimic or scrambled-miR transfected myoblasts 8.31 ± 7.00% vs. 40.29 ± 9.37% respectively, P < 0.001; myosin heavy chain expression miR-744-5p mimic or scrambled-miR transfected myoblasts 0.92 ± 0.39 vs. 13.53 ± 5.5 respectively, P = 0.01). CONCLUSIONS: Combined functional transcriptomics identified 36 miRs including miRs-424-3p/5p, -490-3p, and -744-5p as potential regulators of gene networks associated with recovery of muscle mass and strength following critical illness. MiR-490-3p is identified as a novel regulator of myogenesis.


Asunto(s)
MicroARNs , Animales , Enfermedad Crítica , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Músculos/metabolismo , Mioblastos/metabolismo , Sobrevivientes
15.
Eur Respir J ; 59(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34112731

RESUMEN

Although mesenchymal stromal (stem) cell (MSC) administration attenuates sepsis-induced lung injury in pre-clinical models, the mechanism(s) of action and host immune system contributions to its therapeutic effects remain elusive. We show that treatment with MSCs decreased expression of host-derived microRNA (miR)-193b-5p and increased expression of its target gene, the tight junctional protein occludin (Ocln), in lungs from septic mice. Mutating the Ocln 3' untranslated region miR-193b-5p binding sequence impaired binding to Ocln mRNA. Inhibition of miR-193b-5p in human primary pulmonary microvascular endothelial cells prevents tumour necrosis factor (TNF)-induced decrease in Ocln gene and protein expression and loss of barrier function. MSC-conditioned media mitigated TNF-induced miR-193b-5p upregulation and Ocln downregulation in vitro When administered in vivo, MSC-conditioned media recapitulated the effects of MSC administration on pulmonary miR-193b-5p and Ocln expression. MiR-193b-deficient mice were resistant to pulmonary inflammation and injury induced by lipopolysaccharide (LPS) instillation. Silencing of Ocln in miR-193b-deficient mice partially recovered the susceptibility to LPS-induced lung injury. In vivo inhibition of miR-193b-5p protected mice from endotoxin-induced lung injury. Finally, the clinical significance of these results was supported by the finding of increased miR-193b-5p expression levels in lung autopsy samples from acute respiratory distress syndrome patients who died with diffuse alveolar damage.


Asunto(s)
Lesión Pulmonar Aguda , MicroARNs , Sepsis , Lesión Pulmonar Aguda/terapia , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Células Endoteliales , Humanos , Ratones , MicroARNs/genética , Sepsis/complicaciones , Sepsis/terapia
16.
J Biomed Inform ; 125: 103958, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34839017

RESUMEN

Breast cancer is a highly heterogeneous disease. Subtyping the disease and identifying the genomic features driving these subtypes are critical for precision oncology for breast cancer. This study focuses on developing a new computational approach for breast cancer subtyping. We proposed to use Bayesian tensor factorization (BTF) to integrate multi-omics data of breast cancer, which include expression profiles of RNA-sequencing, copy number variation, and DNA methylation measured on 762 breast cancer patients from The Cancer Genome Atlas. We applied a consensus clustering approach to identify breast cancer subtypes using the factorized latent features by BTF. Subtype-specific survival patterns of the breast cancer patients were evaluated using Kaplan-Meier (KM) estimators. The proposed approach was compared with other state-of-the-art approaches for cancer subtyping. The BTF-subtyping analysis identified 17 optimized latent components, which were used to reveal six major breast cancer subtypes. Out of all different approaches, only the proposed approach showed distinct survival patterns (p < 0.05). Statistical tests also showed that the identified clusters have statistically significant distributions. Our results showed that the proposed approach is a promising strategy to efficiently use publicly available multi-omics data to identify breast cancer subtypes.


Asunto(s)
Neoplasias de la Mama , Teorema de Bayes , Neoplasias de la Mama/genética , Variaciones en el Número de Copia de ADN , Femenino , Genómica , Humanos , Medicina de Precisión
17.
Mol Cell Proteomics ; 21(1): 100189, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34933084

RESUMEN

Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.


Asunto(s)
Neoplasias de la Mama , Proteómica , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Redes y Vías Metabólicas , Metabolómica , Mapas de Interacción de Proteínas
18.
Life (Basel) ; 11(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34832991

RESUMEN

The discovery of new drugs is required in the time of global aging and increasing populations. Traditional drug development strategies are expensive, time-consuming, and have high risks. Thus, drug repurposing, which treats new/other diseases using existing drugs, has become a very admired tactic. It can also be referred to as the re-investigation of the existing drugs that failed to indicate the usefulness for the new diseases. Previously published literature used maximum flow approaches to identify new drug targets for drug-resistant infectious diseases but not for drug repurposing. Therefore, we are proposing a maximum flow-based protein-protein interactions (PPIs) network analysis approach to identify new drug targets (proteins) from the targets of the FDA (Food and Drug Administration) drugs and their associated drugs for chronic diseases (such as breast cancer, inflammatory bowel disease (IBD), and chronic obstructive pulmonary disease (COPD)) treatment. Experimental results showed that we have successfully turned the drug repurposing into a maximum flow problem. Our top candidates of drug repurposing, Guanidine, Dasatinib, and Phenethyl Isothiocyanate for breast cancer, IBD, and COPD were experimentally validated by other independent research as the potential candidate drugs for these diseases, respectively. This shows the usefulness of the proposed maximum flow approach for drug repurposing.

19.
Gene ; 800: 145842, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34274479

RESUMEN

Treatment of serum-starved quiescent human cells with fetal bovine serum (FBS), epidermal growth factor (EGF), or the phorbol ester (12-O-tetradecanoylphorbol-13-acetate, TPA) activates the RAS-MAPK pathway which initiates a transcriptional program which drives cells toward proliferation. Stimulation of the RAS-MAPK pathway activates mitogen- and stress-activated kinases (MSK) 1 and 2, which phosphorylate histone H3 at S10 (H3S10ph) or S28 (H3S28ph) (nucleosomal response) located at the regulatory regions of immediate-early genes, setting in motion a series of chromatin remodeling events that result in transcription initiation. To investigate immediate-early genes regulated by the MSK, we have completed transcriptome analyses (RNA sequencing) of human normal fibroblast cells (CCD-1070Sk) stimulated with EGF or TPA ± H89, a potent MSK/PKA inhibitor. The induction of many immediate-early genes was independent of MSK activity. However, the induction of immediate-early genes attenuated with H89 also had reduced induction with the PKA inhibitor, Rp-cAMPS. Several EGF-induced genes, coding for transcriptional repressors, were further upregulated with H89 but not with Rp-cAMPS, suggesting a role for MSK in modulating the induction level of these genes.


Asunto(s)
Fibroblastos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Mitógenos/farmacología , Línea Celular , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacología , Factor de Crecimiento Epidérmico/farmacología , Fibroblastos/fisiología , Perfilación de la Expresión Génica , Genes Inmediatos-Precoces/efectos de los fármacos , Humanos , Isoquinolinas/farmacología , Reproducibilidad de los Resultados , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Sulfonamidas/farmacología , Acetato de Tetradecanoilforbol/farmacología , Tionucleótidos/farmacología
20.
BMC Cancer ; 21(1): 648, 2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34059012

RESUMEN

BACKGROUND: Predicting patient drug response based on a patient's molecular profile is one of the key goals of precision medicine in breast cancer (BC). Multiple drug response prediction models have been developed to address this problem. However, most of them were developed to make sensitivity predictions for multiple single drugs within cell lines from various cancer types instead of a single cancer type, do not take into account drug properties, and have not been validated in cancer patient-derived data. Among the multi-omics data, gene expression profiles have been shown to be the most informative data for drug response prediction. However, these models were often developed with individual genes. Therefore, this study aimed to develop a drug response prediction model for BC using multiple data types from both cell lines and drugs. METHODS: We first collected the baseline gene expression profiles of 49 BC cell lines along with IC50 values for 220 drugs tested in these cell lines from Genomics of Drug Sensitivity in Cancer (GDSC). Using these data, we developed a multiple-layer cell line-drug response network (ML-CDN2) by integrating a one-layer cell line similarity network based on the pathway activity profiles and a three-layer drug similarity network based on the drug structures, targets, and pan-cancer IC50 profiles. We further used ML-CDN2 to predict the drug response for new BC cell lines or patient-derived samples. RESULTS: ML-CDN2 demonstrated a good predictive performance, with the Pearson correlation coefficient between the observed and predicted IC50 values for all GDSC cell line-drug pairs of 0.873. Also, ML-CDN2 showed a good performance when used to predict drug response in new BC cell lines from the Cancer Cell Line Encyclopedia (CCLE), with a Pearson correlation coefficient of 0.718. Moreover, we found that the cell line-derived ML-CDN2 model could be applied to predict drug response in the BC patient-derived samples from The Cancer Genome Atlas (TCGA). CONCLUSIONS: The ML-CDN2 model was built to predict BC drug response using comprehensive information from both cell lines and drugs. Compared with existing methods, it has the potential to predict the drug response for BC patient-derived samples.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Modelos Biológicos , Antineoplásicos/uso terapéutico , Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Conjuntos de Datos como Asunto , Ensayos de Selección de Medicamentos Antitumorales/métodos , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Concentración 50 Inhibidora , Medicina de Precisión/métodos , RNA-Seq
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA