Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Liver Cancer ; 13(1): 41-55, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38344447

RESUMEN

Introduction: A set of genetic mutations to classify hepatocellular carcinoma (HCC) useful to clinical studies is an unmet need. Hepatitis B virus-related HCC (HBV-HCC) harbors a unique genetic mutation, namely, the HBV integration, among other somatic endogenous gene mutations. We explored a combination of HBV DNA integrations and common somatic mutations to classify HBV-HCC by using a capture-sequencing platform. Methods: A total of 153 HBV-HCCs after surgical resection were subjected to capture sequencing to identify HBV integrations and three common somatic mutations in genomes. Three mutually exclusive mutations, HBV DNA integration into the TERT promoter, HBV DNA integration into MLL4, or TERT promoter point mutation, were identified in HBV-HCC. Results: They were used to classify HBV-HCCs into four groups: G1 with HBV-TERT integration (25.5%); G2 with HBV-MLL4 integration (10.5%); G3 with TERT promoter mutation (30.1%); and G4 without these three mutations (34.0%). Clinically, G3 has the highest male-to-female ratio, cirrhosis rate, and associated with higher early recurrence and mortality after resection, but G4 has the best outcome. Transcriptomic analysis revealed a grouping different from the published ones and G2 with an active immune profile related to immune checkpoint inhibitor response. Analysis of integrated HBV DNA provided clues for HBV genotype and variants in carcinogenesis of different HCC subgroup. This new classification was also validated in another independent cohort. Conclusion: A simple and robust genetic classification was developed to aid in understanding HBV-HCC and in harmonizing clinical studies.

2.
J Hepatol ; 72(3): 489-497, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31634533

RESUMEN

BACKGROUND & AIMS: Intratumor heterogeneity has frequently been reported in patients with hepatocellular carcinoma (HCC). Thus, the reliability of single-region tumor samples for evaluation of the tumor immune microenvironment is also debatable. We conducted a prospective study to analyze the similarity in tumor immune microenvironments among different regions of a single tumor. METHODS: Multi-region sampling was performed on newly resected tumors. The tumor immune microenvironment was evaluated by immunohistochemical staining of PD-L1, CD4, CD8, CD20, FoxP3, DC-LAMP (or LAMP3), CD68, MPO, and tertiary lymphoid structures (TLSs). PD-L1 expression was manually quantified according to the percentage of PD-L1-stained tumor or stromal cells. The densities (number/mm2) of immune cells and the number of TLSs per sample were determined by whole-section counting. RNA-sequencing was applied in selected samples. Similarities in tumor immune microenvironments within each tumor were evaluated by multivariate Mahalanobis distance analyses. RESULTS: Thirteen tumors were collected from 12 patients. The median diameter of tumors was 9 cm (range 3-16 cm). A median of 6 samples (range 3-12) were obtained from each tumor. Nine (69.2%) tumors exhibited uniform expression of PD-L1 in all regions of the tumor. Out of 13 tumors analyzed by immunohistochemical staining, 8 (61.5%) tumors displayed a narrow Mahalanobis distance for all regions within the tumor; while 8 (66.7%) of the 12 tumors analyzed by RNA-sequencing displayed a narrow Mahalanobis distance. Immunohistochemistry and RNA-sequencing had a high concordance rate (83.3%; 10 of 12 tumors) for the evaluation of similarities between tumor immune microenvironments within a tumor. CONCLUSIONS: A single-region tumor sample might be reliable for the evaluation of tumor immune microenvironments in approximately 60-70% of patients with HCC. LAY SUMMARY: Heterogeneity in the regional immune microenvironments of tumors has been reported in patients with hepatocellular carcinoma. This heterogeneity could be an obstacle when trying to reliably evaluate the immune microenvironment of an entire tumor using only a single-region tumor sample, which may be the only option in patients with more advanced disease. Our study utilized both immunohistochemical and transcriptomic analyses to demonstrate that a single-region sample is reliable for evaluation of tumor immune microenvironments in 60-70% of patients with hepatocellular carcinoma.


Asunto(s)
Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/metabolismo , Estructuras Linfoides Terciarias/inmunología , Microambiente Tumoral/inmunología , Adulto , Anciano , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/cirugía , Femenino , Humanos , Inmunohistoquímica/métodos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/cirugía , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Persona de Mediana Edad , Estudios Prospectivos , RNA-Seq/métodos , Reproducibilidad de los Resultados , Linfocitos T/inmunología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA