Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biomater Sci ; 12(20): 5324-5336, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39248106

RESUMEN

The balance of macrophages in immune reactions is crucial for tissue repair. Despite some studies on responsive surfaces for immunomodulation regulation of macrophage phenotypes via external stimuli, 2D and manual interventions are limited. Herein, to address these limitations, we developed an inflammation environment-responsive macrophage-laden hydrogel-filled scaffold for investigating the impact of matrix confinement on macrophage phenotypes adaptively. We fabricated gelatin scaffolds with a controllable pore size and found that macrophages within smaller pores tended to have an anti-inflammation phenotype. We prepared poly(vinyl alcohol) (PVA)-based hydrogels crosslinked with phenylboronic acid (PBA)-based linkers. The hydrogels possessed shear-thinning, cell-loading, and ROS-sensitive-degradation abilities. Subsequently, a macrophage-laden hydrogel-filled scaffold was fabricated by filling the hydrogels into the porous scaffold under vacuum. With the degradation of the hydrogels under the overexpression of ROS in an inflammation environment, the macrophages were transferred from a state with strong matrix confinement to that with a weaker one. Meanwhile, with the change in matrix confinement, the macrophages upregulated the expressions of Arg-1 and IL-10 and downregulated the expressions of IL-1ß, TNF-α, and IL-6, indicating polarization toward the anti-inflammatory phenotype. The inflammation environment-adaptive modulation of macrophage phenotypes in 3D provides a smart and biomimetic strategy for immunomodulation and regenerative medicine.


Asunto(s)
Hidrogeles , Inflamación , Macrófagos , Alcohol Polivinílico , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Hidrogeles/química , Alcohol Polivinílico/química , Animales , Ratones , Células RAW 264.7 , Gelatina/química , Andamios del Tejido/química , Especies Reactivas de Oxígeno/metabolismo , Ácidos Borónicos/química , Ácidos Borónicos/farmacología , Porosidad
2.
Acta Biomater ; 177: 77-90, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331133

RESUMEN

Intrauterine adhesions (IUA) are the most common cause of uterine infertility, and conventional treatments have not consistently achieved satisfactory pregnancy rates. Stem cell therapy shows promising potential for the clinical treatment of IUA. Although various advanced biomaterials have been designed for delivering stem cells to the uterine cavity, there remain significant challenges, particularly in devising therapeutic strategies for clinical application that minimize surgical incisions and conform to the intricate structure of uterine cavity. Herein, an injectable hydrogel loaded with human umbilical cord-derived mesenchymal stem cells (UCMSCs) was synthesized via the Diels-Alder click reaction for endometrial regeneration and fertility restoration, exhibiting suitable mechanical properties, good biocompatibility, and desirable degradation properties. Notably, this hydrogel permitted minimally invasive administration and integrated seamlessly with surrounding tissue. Our study revealed that the UCMSCs-laden injectable hydrogel enhanced cell proliferation, migration, angiogenesis, and exhibited anti-fibrotic effects in vitro. The implantation of this hydrogel significantly facilitated endometrium regeneration and restored fertility in a rat endometrial damage model. Mechanistically, in vivo results indicated that the UCMSCs-laden injectable hydrogel effectively promoted macrophage recruitment and facilitated M2 phenotype polarization. Collectively, this hydrogel demonstrated efficacy in regenerating damaged endometrium, leading to the restoration of fertility. Consequently, it holds promise as a potential therapeutic strategy for endometrial damage and fertility decline arising from intrauterine adhesions. STATEMENT OF SIGNIFICANCE: Severe endometrial traumas frequently lead to intrauterine adhesions and subsequent infertility. Stem cell therapy shows promising potential for the clinical treatment of IUA; however, challenges remain, including low delivery efficiency and compromised stem cell activity during the delivery process. In this study, we fabricated an injectable hydrogel loaded with UCMSCs via the Diels-Alder click reaction, which exhibited unique bioorthogonality. The in situ-gelling hydrogels could be introduced through a minimally invasive procedure and adapt to the intricate anatomy of the uterus. The UCMSCs-laden injectable hydrogel promoted endometrial regeneration and fertility restoration in a rat endometrial damage model, efficaciously augmenting macrophage recruitment and promoting their polarization to the M2 phenotype. The administration of UCMSCs-laden injectable hydrogel presents a promising therapeutic strategy for patients with severe intrauterine adhesion.


Asunto(s)
Infertilidad , Células Madre Mesenquimatosas , Enfermedades Uterinas , Embarazo , Femenino , Humanos , Ratas , Animales , Hidrogeles/química , Enfermedades Uterinas/terapia , Enfermedades Uterinas/metabolismo , Enfermedades Uterinas/patología , Endometrio/patología , Infertilidad/metabolismo , Infertilidad/patología , Adherencias Tisulares/terapia , Adherencias Tisulares/metabolismo , Cordón Umbilical/metabolismo
3.
Adv Healthc Mater ; 11(21): e2201680, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36049781

RESUMEN

Severe intrauterine adhesions (IUAs), characterized by inadequate endometrial repair and fibrosis, can lead to infertility. Stem cell-based therapies, which deliver mesenchymal stem cells (MSCs) to the wound site, hold a considerable promise for endometrium regeneration. However, some notable hurdles, such as stemness loss, immunogenicity, low retention and survival rate, limit their clinical application. Evidence shows a strategy of mobilizing endogenous MSCs recruitment can overcome the traditional limitations of exogenous stem cell-based therapies. Here, an acellular biomaterial named stromal derived factor-1 alpha (SDF-1α)/E7-modified collagen scaffold (CES) is explored. CES based on harnessing the innate regenerative potential of the body enables near-complete endometrium regeneration and fertility restoration both in a rat endometrium acute damage model and a rat IUA model. Mechanistically, the CES implantation promotes endogenous MSCs recruitment via a macrophage-coordinated strategy; then the homing MSCs exert the function of immunomodulation and altered local microenvironments toward regeneration. To conclude, CES, which can harness endogenous MSCs and overcome the traditional limitations of cell-based therapies, can serve as a clinically feasible and cell-free strategy with high therapeutic efficiency for IUA treatment.


Asunto(s)
Células Madre Mesenquimatosas , Enfermedades Uterinas , Humanos , Femenino , Ratas , Animales , Endometrio , Enfermedades Uterinas/terapia , Colágeno , Fertilidad , Regeneración
4.
Acta Biomater ; 153: 139-148, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36167238

RESUMEN

Designing biomaterials with precise immunomodulation can help to decipher the dynamic interactions between macrophages and biomaterials to match the tissue healing process. Although some advanced stimuli-responsive immunomodulatory biomaterials were reported for cell dynamic modulation, while most triggers need external stimuli by manual intervention, there would be the inevitable errors and uncertainties. Thus, developing immunomodulatory biomaterials with adaptive abilities, which can recognize the inflammation signals, change their properties spatiotemporally under the microenvironment triggers, and provide feedback to realize macrophages modulation in different healing stages, has become a promising strategy. In this work, we developed an inflammation-adaptive Arg-Gly-Asp (RGD) -patterned surface for spatiotemporal immunomodulation of macrophage. We fabricated a methacrylated hyaluronic acid (MA-HA) hydrogel with thiol-functionalized RGD-patterned surface by employing photolithography technology. Then, thiol-functionalized RGD contained ROS-cleavable linker was filled the remaining sites and consequently, a dynamic surface with temporary homogeneous RGD was obtained. Under the overproduction of ROS by the inflammation-activated macrophages, the linker was cleaved, and the homogeneous RGD surface was transformed to the RGD patterned surface, which triggered elongation of macrophages and consequently the upregulated expressions of arginase-1, IL-10 and TNF-ß1, indicating the polarization toward to anti-inflammatory phenotype. Developing inflammatory environment-adaptive surface for spatiotemporal modulation of macrophages polarization provides a precise and smart strategy for the healing-matched immunomodulation to facilitate healing outcomes. STATEMENT OF SIGNIFICANCE: Designing biomaterials with precise immunomodulation can help to decipher the dynamic interactions between macrophages and biomaterials to match tissue repair process. Some immunomodulatory biomaterials were reported for cell dynamic modulation, while most triggers need external manual intervention. Thus, we developed an immunomodulatory biomaterial with inflammation-adaptive patterned surface, which can recognize abnormal signals and change its properties spatiotemporally under the microenvironment triggers, and provide feedback to realize macrophages modulation in different stages. The dynamic surface can adapt to the changes of microenvironment and dynamically to match the cell behavior and tissue healing process on demand without external manual intervention. Additionally, the surface achieves the balance of macrophages with pro- and anti-inflammatory phenotypes in the tissue repair process.


Asunto(s)
Inmunomodulación , Macrófagos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Macrófagos/metabolismo , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/metabolismo , Inflamación/metabolismo , Antiinflamatorios/metabolismo , Oligopéptidos/farmacología , Oligopéptidos/metabolismo , Compuestos de Sulfhidrilo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA