Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
World J Surg ; 48(1): 86-96, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38686746

RESUMEN

BACKGROUND: Low-grade appendiceal mucinous neoplasms (LAMN) are very rare, accounting for approximately 0.2%-0.5% of gastrointestinal tumors. We conducted a multicenter retrospective study to explore the impact of different surgical procedures combined with HIPEC on the short-term outcomes and long-term survival of patients. METHODS: We retrospectively analyzed the clinicopathological data of 91 LAMN perforation patients from 9 teaching hospitals over a 10-year period, and divided them into HIPEC group and non-HIPEC group based on whether or not underwent HIPEC. RESULTS: Of the 91 patients with LAMN, 52 were in the HIPEC group and 39 in the non-HIPEC group. The Kaplan-Meier method predicted that 52 patients in the HIPEC group had 5- and 10-year overall survival rates of 82.7% and 76.9%, respectively, compared with predicted survival rates of 51.3% and 46.2% for the 39 patients in the non-HIPEC group, with a statistically significant difference between the two groups (χ2 = 10.622, p = 0.001; χ2 = 10.995, p = 0.001). Compared to the 5-year and 10-year relapse-free survival rates of 75.0% and 65.4% in the HIPEC group, respectively, the 5-year and 10-year relapse-free survival rates of 48.7% and 46.2% in the non-HIPEC group were significant different between the two outcomes (χ2 = 8.063, p = 0.005; χ2 = 6.775, p = 0.009). The incidence of postoperative electrolyte disturbances and hypoalbuminemia was significantly higher in the HIPEC group than in the non-HIPEC group (p = 0.023; p = 0.044). CONCLUSIONS: This study shows that surgery combined with HIPEC can significantly improve 5-year and 10-year overall survival rates and relapse-free survival rates of LAMN perforation patients, without affecting their short-term clinical outcomes.


Asunto(s)
Adenocarcinoma Mucinoso , Neoplasias del Apéndice , Quimioterapia Intraperitoneal Hipertérmica , Humanos , Estudios Retrospectivos , Masculino , Femenino , Neoplasias del Apéndice/terapia , Neoplasias del Apéndice/mortalidad , Neoplasias del Apéndice/patología , Persona de Mediana Edad , Adulto , Adenocarcinoma Mucinoso/terapia , Adenocarcinoma Mucinoso/mortalidad , Adenocarcinoma Mucinoso/patología , Anciano , Terapia Combinada , Resultado del Tratamiento , Tasa de Supervivencia , Clasificación del Tumor , Perforación Intestinal/etiología , Neoplasias Peritoneales/terapia , Neoplasias Peritoneales/mortalidad
2.
Curr Cancer Drug Targets ; 24(2): 167-177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37282642

RESUMEN

BACKGROUND: BRD4 is a member of the bromodomain and extra terminal domain (BET) family of proteins, containing two bromodomains and one extra terminal domain, and is overexpressed in several human malignancies. However, its expression in gastric cancer has not yet been well illustrated. OBJECTIVE: This study aimed to elucidate the overexpression of BRD4 in gastric cancer and its clinical significance as a novel therapeutic target. METHODS: Fresh gastric cancer tissues and paraffin-embedded specimens of gastric cancer patients were collected, and the BRD4 expression was examined by Western Blot Analysis (WB) and Immunohistochemistry Analysis (IHC), respectively. The possible relationship between BRD4 expression and the clinicopathological features as well as survival in gastric cancer patients was analyzed. The effect of BRD4 silencing on human gastric cancer cell lines was investigated by MTT assay, WB, wound healing assay, and Transwell invasion. RESULTS: The results showed that the expression level in tumor tissues and adjacent tissues was significantly higher than that in normal tissues, respectively (P < 0.01). BRD4 expression level in gastric cancer tissues was strongly correlated with the degree of tumor differentiated degree (P = 0.033), regional lymph nodes metastasis (P = 0.038), clinical staging (P = 0.002), and survival situation (P = 0.000), while the gender (P = 0.564), age (P = 0.926) and infiltrating depth (P = 0.619) of patients were not associated. Increased BRD4 expression resulted in poor overall survival (P = 0.003). In in vitro assays, BRD4 small interfering RNA resulted in significantly decreased BRD4 protein expression, therefore inhibiting proliferation, migration, and invasion of gastric cancer cells. CONCLUSION: BRD4 might be a novel biomarker for the early diagnosis, prognosis, and therapeutic target in gastric cancer.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Relevancia Clínica , Línea Celular Tumoral , Proliferación Celular , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pronóstico , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
3.
J Clin Invest ; 133(19)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37581937

RESUMEN

Colorectal cancer (CRC) at advanced stages is rarely curable, underscoring the importance of exploring the mechanism of CRC progression and invasion. NOD-like receptor family member NLRP12 was shown to suppress colorectal tumorigenesis, but the precise mechanism was unknown. Here, we demonstrate that invasive adenocarcinoma development in Nlrp12-deficient mice is associated with elevated expression of genes involved in proliferation, matrix degradation, and epithelial-mesenchymal transition. Signaling pathway analysis revealed higher activation of the Wnt/ß-catenin pathway, but not NF-κB and MAPK pathways, in the Nlrp12-deficient tumors. Using Nlrp12-conditional knockout mice, we revealed that NLRP12 downregulates ß-catenin activation in intestinal epithelial cells, thereby suppressing colorectal tumorigenesis. Consistent with this, Nlrp12-deficient intestinal organoids and CRC cells showed increased proliferation, accompanied by higher activation of ß-catenin in vitro. With proteomic studies, we identified STK38 as an interacting partner of NLRP12 involved in the inhibition of phosphorylation of GSK3ß, leading to the degradation of ß-catenin. Consistently, the expression of NLRP12 was significantly reduced, while p-GSK3ß and ß-catenin were upregulated in mouse and human colorectal tumor tissues. In summary, NLRP12 is a potent negative regulator of the Wnt/ß-catenin pathway, and the NLRP12/STK38/GSK3ß signaling axis could be a promising therapeutic target for CRC.


Asunto(s)
Neoplasias Colorrectales , beta Catenina , Humanos , Ratones , Animales , beta Catenina/genética , beta Catenina/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Proteómica , Vía de Señalización Wnt , Transformación Celular Neoplásica/genética , Carcinogénesis/genética , Neoplasias Colorrectales/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Movimiento Celular , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
4.
Cancer Immunol Res ; 11(5): 583-599, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36921097

RESUMEN

Cyclic GMP-AMP (cGAMP) is a second messenger that activates the stimulator of interferon genes (STING) innate immune pathway to induce the expression of type I IFNs and other cytokines. Pharmacologic activation of STING is considered a potent therapeutic strategy in cancer. In this study, we used a cell-based phenotypic screen and identified podophyllotoxin (podofilox), a microtubule destabilizer, as a robust enhancer of the cGAMP-STING signaling pathway. We found that podofilox enhanced the cGAMP-mediated immune response by increasing STING-containing membrane puncta and the extent of STING oligomerization. Furthermore, podofilox changed the trafficking pattern of STING and delayed trafficking-mediated STING degradation. Importantly, the combination of cGAMP and podofilox had profound antitumor effects on mice by activating the immune response through host STING signaling. Together, these data provide insights into the regulation of cGAMP-STING pathway activation and demonstrate what we believe to be a novel approach for modulating this pathway and thereby promoting antitumor immunity.


Asunto(s)
Neoplasias , Podofilotoxina , Animales , Ratones , Podofilotoxina/farmacología , Proteínas de la Membrana/metabolismo , Transducción de Señal , Inmunidad Innata
5.
Cell Rep ; 39(9): 110880, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35649354

RESUMEN

Cyclic 2',3'-GMP-AMP (cGAMP) binds to and activates stimulator of interferon genes (STING), which then induces interferons to drive immune responses against tumors and pathogens. Exogenous cGAMP produced by infected and malignant cells and synthetic cGAMP used in immunotherapy must traverse the cell membrane to activate STING in target cells. However, as an anionic hydrophilic molecule, cGAMP is not inherently membrane permeable. Here, we show that LL-37, a human host defense peptide, can function as a transporter of cGAMP. LL-37 specifically binds cGAMP and efficiently delivers cGAMP into target cells. cGAMP transferred by LL-37 activates robust interferon responses and host antiviral immunity in a STING-dependent manner. Furthermore, we report that LL-37 inducers vitamin D3 and sodium butyrate promote host immunity by enhancing endogenous LL-37 expression and its mediated cGAMP immune response. Collectively, our data uncover an essential role of LL-37 in innate immune activation and suggest new strategies for immunotherapy.


Asunto(s)
Factores de Restricción Antivirales , Catelicidinas , Inmunidad Innata , Interferones , Factores de Restricción Antivirales/inmunología , Catelicidinas/inmunología , Humanos , Interferones/inmunología , Proteínas de la Membrana/metabolismo , Nucleótidos Cíclicos
6.
Cell Rep Med ; 3(3): 100554, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35492873

RESUMEN

Mutations in STK11/LKB1 in non-small cell lung cancer (NSCLC) are associated with poor patient responses to immune checkpoint blockade (ICB), and introduction of a Stk11/Lkb1 (L) mutation into murine lung adenocarcinomas driven by mutant Kras and Trp53 loss (KP) resulted in an ICB refractory syngeneic KPL tumor. Mechanistically this occurred because KPL mutant NSCLCs lacked TCF1-expressing CD8 T cells, a phenotype recapitulated in human STK11/LKB1 mutant NSCLCs. Systemic inhibition of Axl results in increased type I interferon secretion from dendritic cells that expanded tumor-associated TCF1+PD-1+CD8 T cells, restoring therapeutic response to PD-1 ICB in KPL tumors. This was observed in syngeneic immunocompetent mouse models and in humanized mice bearing STK11/LKB1 mutant NSCLC human tumor xenografts. NSCLC-affected individuals with identified STK11/LKB1 mutations receiving bemcentinib and pembrolizumab demonstrated objective clinical response to combination therapy. We conclude that AXL is a critical targetable driver of immune suppression in STK11/LKB1 mutant NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Linfocitos T CD8-positivos/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Receptor de Muerte Celular Programada 1/genética , Proteínas Serina-Treonina Quinasas/genética , Tirosina Quinasa del Receptor Axl
7.
Am J Physiol Heart Circ Physiol ; 321(2): H353-H368, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34142887

RESUMEN

Arterial stiffness, a consequence of smoking, is an underlying risk factor of cardiovascular diseases. Epoxyeicosatrienoic acids (EETs), hydrolyzed by soluble epoxide hydrolase (sEH), have beneficial effects against vascular dysfunction. However, the role of sEH knockout in nicotine-induced arterial stiffness was not characterized. We hypothesized that sEH knockout could prevent nicotine-induced arterial stiffness. In the present study, Ephx2 (the gene encodes sEH enzyme) null (Ephx2-/-) mice and wild-type (WT) littermate mice were infused with or without nicotine and administered with or without nicotinamide [NAM, sirtuin-1 (SIRT1) inhibitor] simultaneously for 4 wk. Nicotine treatment increased sEH expression and activity in the aortas of WT mice. Nicotine infusion significantly induced vascular remodeling, arterial stiffness, and SIRT1 deactivation in WT mice, which was attenuated in Ephx2 knockout mice (Ephx2-/- mice) without NAM treatment. However, the arterial protective effects were gone in Ephx2-/- mice with NAM treatment. In vitro, 11,12-EET treatment attenuated nicotine-induced matrix metalloproteinase 2 (MMP2) upregulation via SIRT1-mediated yes-associated protein (YAP) deacetylation. In conclusion, sEH knockout attenuated nicotine-induced arterial stiffness and vascular remodeling via SIRT1-induced YAP deacetylation.NEW & NOTEWORTHY We presently show that sEH knockout repressed nicotine-induced arterial stiffness and extracellular matrix remodeling via SIRT1-induced YAP deacetylation, which highlights that sEH is a potential therapeutic target in smoking-induced arterial stiffness and vascular remodeling.


Asunto(s)
Aorta/efectos de los fármacos , Epóxido Hidrolasas/genética , Niacinamida/farmacología , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Sirtuina 1/metabolismo , Rigidez Vascular/efectos de los fármacos , Complejo Vitamínico B/farmacología , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacología , Proteínas Adaptadoras Transductoras de Señales/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Aorta/metabolismo , Aorta/fisiopatología , Metaloproteinasa 2 de la Matriz/efectos de los fármacos , Metaloproteinasa 2 de la Matriz/genética , Ratones , Ratones Noqueados , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/efectos de los fármacos , Rigidez Vascular/genética , Vasodilatadores/farmacología , Proteínas Señalizadoras YAP
8.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34074794

RESUMEN

The DNA-sensing enzyme cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) regulates inflammation and immune defense against pathogens and malignant cells. Although cGAS has been shown to exert antitumor effects in several mouse models harboring transplanted tumor cell lines, its role in tumors arising from endogenous tissues remains unknown. Here, we show that deletion of cGAS in mice exacerbated chemical-induced colitis and colitis-associated colon cancer (CAC). Interestingly, mice lacking cGAS were more susceptible to CAC than those lacking stimulator of interferon genes (STING) or type I interferon receptor under the same conditions. cGAS but not STING is highly expressed in intestinal stem cells. cGAS deficiency led to intestinal stem cell loss and compromised intestinal barrier integrity upon dextran sodium sulfate-induced acute injury. Loss of cGAS exacerbated inflammation, led to activation of STAT3, and accelerated proliferation of intestinal epithelial cells during CAC development. Mice lacking cGAS also accumulated myeloid-derived suppressive cells within the tumor, displayed enhanced Th17 differentiation, but reduced interleukin (IL)-10 production. These results indicate that cGAS plays an important role in controlling CAC development by defending the integrity of the intestinal mucosa.


Asunto(s)
Neoplasias del Colon/enzimología , Mucosa Intestinal/enzimología , Proteínas de Neoplasias/metabolismo , Nucleotidiltransferasas/metabolismo , Animales , Neoplasias del Colon/genética , Ratones , Ratones Noqueados , Células Supresoras de Origen Mieloide/enzimología , Proteínas de Neoplasias/genética , Nucleotidiltransferasas/genética , Células Madre/enzimología , Células Th17/enzimología
9.
Nature ; 591(7850): 438-444, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33627868

RESUMEN

Stromal cells in adult bone marrow that express leptin receptor (LEPR) are a critical source of growth factors, including stem cell factor (SCF), for the maintenance of haematopoietic stem cells and early restricted progenitors1-6. LEPR+ cells are heterogeneous, including skeletal stem cells and osteogenic and adipogenic progenitors7-12, although few markers have been available to distinguish these subsets or to compare their functions. Here we show that expression of an osteogenic growth factor, osteolectin13,14, distinguishes peri-arteriolar LEPR+ cells poised to undergo osteogenesis from peri-sinusoidal LEPR+ cells poised to undergo adipogenesis (but retaining osteogenic potential). Peri-arteriolar LEPR+osteolectin+ cells are rapidly dividing, short-lived osteogenic progenitors that increase in number after fracture and are depleted during ageing. Deletion of Scf from adult osteolectin+ cells did not affect the maintenance of haematopoietic stem cells or most restricted progenitors but depleted common lymphoid progenitors, impairing lymphopoiesis, bacterial clearance, and survival after acute bacterial infection. Peri-arteriolar osteolectin+ cell maintenance required mechanical stimulation. Voluntary running increased, whereas hindlimb unloading decreased, the frequencies of peri-arteriolar osteolectin+ cells and common lymphoid progenitors. Deletion of the mechanosensitive ion channel PIEZO1 from osteolectin+ cells depleted osteolectin+ cells and common lymphoid progenitors. These results show that a peri-arteriolar niche for osteogenesis and lymphopoiesis in bone marrow is maintained by mechanical stimulation and depleted during ageing.


Asunto(s)
Arteriolas , Linfopoyesis , Osteogénesis , Nicho de Células Madre , Tejido Adiposo/citología , Envejecimiento , Animales , Células de la Médula Ósea/citología , Huesos/citología , Femenino , Factores de Crecimiento de Célula Hematopoyética/metabolismo , Lectinas Tipo C/metabolismo , Linfocitos/citología , Masculino , Ratones , Receptores de Leptina/metabolismo , Factor de Células Madre , Células del Estroma/citología
10.
Mol Cell Endocrinol ; 523: 111149, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33387601

RESUMEN

Studies have shown that epoxyeicosatrienoic acids (EETs) can regulate glucose homeostasis, but the specific mechanisms need further exploration. The sodium-glucose co-transporter 2 (SGLT2) is highly expressed in diabetic kidneys, which further promotes renal reabsorption of glucose to respond to the hyperglycemic state of diabetes. Herein, whether EETs can be a latent inhibitor of SGLT2 to regulate glucose homeostasis in diabetic state needs to be elucidated. Our study demonstrated that EETs attenuated the glucose reabsorption via renal tubular epithelial cells in diabetic mice, which partly accounted for the beneficial effects of EETs on glucose homeostasis. Moreover, 14,15-EET suppressed SGLT2 expression in both diabetic kidney and renal tubular epithelial cells. Further, inhibition of NF-κB with BAY 11-7082 decreased insulin-induced SGLT2 expression while NF-κB overexpression reversed the above effects. In addition, 14,15-EET attenuated SGLT2 expression via inactivating NF-κB. Mechanistically, 14,15-EET attenuated NF-κB mediated SGLT2 transcription at the -1821/-1812 P65-binding site. These results showed that EETs ameliorated glucose homeostasis via preventing NF-κB-mediated transcription of SGLT2 in renal tubular epithelial cells, providing a unique therapeutic strategy for insulin resistance and diabetes.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Células Epiteliales/metabolismo , Glucosa/metabolismo , Homeostasis , Túbulos Renales Proximales/citología , FN-kappa B/metabolismo , Transportador 2 de Sodio-Glucosa/genética , Transcripción Genética , Ácido 8,11,14-Eicosatrienoico/farmacología , Animales , Línea Celular , Diabetes Mellitus Experimental/patología , Células Epiteliales/efectos de los fármacos , Homeostasis/efectos de los fármacos , Humanos , Insulina/farmacología , Ratones Endogámicos C57BL , Compuestos de Fenilurea/administración & dosificación , Piperidinas/administración & dosificación , Transportador 2 de Sodio-Glucosa/metabolismo , Transcripción Genética/efectos de los fármacos
11.
Clin Cardiol ; 43(12): 1478-1493, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33026120

RESUMEN

BACKGROUD: The association between underlying comorbidities and cardiac injury and the prognosis in coronavirus disease 2019 (COVID-19) patients was assessed in this study. HYPOTHESIS: The underlying comorbidities and cardiac injury may be associated with the prognosis in COVID-19 patients. METHODS: A systematic search was conducted in PubMed, EMBASE, Web of science, and The Cochrane library from December 2019 to July 2020. The odds ratio (OR) and 95% confidence intervals (95% CI) were used to estimate the probability of comorbidities and cardiac injury in COVID-19 patients with or without severe type, or in survivors vs nonsurvivors of COVID-19 patients. RESULTS: A total of 124 studies were included in this analysis. A higher risk for severity was observed in COVID-19 patients with comorbidities. The pooled result in patients with hypertension (OR 2.57, 95% CI: 2.12-3.11), diabetes (OR 2.54, 95% CI: 1.89-3.41), cardiovascular diseases (OR 3.86, 95% CI: 2.70-5.52), chronic obstractive pulmonary disease (OR 2.71, 95% CI: 1.98-3.70), chronic kidney disease (OR 2.20, 95% CI: 1.27-3.80), and cancer (OR 2.42, 95% CI: 1.81-3.22) respectively. All the comorbidities presented a higher risk of mortality. Moreover, the prevalence of acute cardiac injury is higher in severe group than in nonsevere group, and acute cardiac injury is associated with an increased risk for in-hospital mortality. CONCLUSION: Comorbidities and acute cardiac injury are closely associated with poor prognosis in COVID-19 patients. It is necessary to continuously monitor related clinical indicators of organs injury and concern comorbidities in COVID-19 patients.


Asunto(s)
COVID-19/mortalidad , Índice de Severidad de la Enfermedad , COVID-19/fisiopatología , Enfermedades Cardiovasculares/mortalidad , Causas de Muerte , Comorbilidad , Diabetes Mellitus/mortalidad , Femenino , Humanos , Hipertensión/mortalidad , Masculino , Neoplasias/mortalidad , Pandemias/estadística & datos numéricos , Pronóstico , Insuficiencia Renal Crónica/mortalidad
12.
Biochem Pharmacol ; 177: 113951, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32251672

RESUMEN

Dipeptidyl peptidase-4 (DPP4) is elevated in numerous cardiovascular pathological processes and DPP4 inhibition is associated with reduced inflammation and oxidative stress. The aim of this study was to examine the role of DPP4 in endothelial senescence. Sprague-Dawley rats (24 months) were orally administrated saxagliptin (10 mg·kg-1·d-1), a DPP4 inhibitor, for 12 weeks in drinking water. Body weight, heart rate, blood glucose, and blood pressure were measured and vascular histological experiments were performed. In vitro studies were performed using H2O2-induced senescent human umbilical vein endothelial cells. Both in vivo and in vitro studies confirmed the elevation of DPP4 in senescent vascular endothelium, and inhibition or knockdown of DPP4 ameliorated endothelial senescence. In addition, DPP4 inhibition or silencing reduced endothelial oxidative stress levels in aging vasculature and senescent endothelial cells. Moreover, DPP4 inhibition or knockdown normalized the expression and phosphorylation of AMP-activated protein kinase-α (AMPKα) and sirtuin 1 (SIRT1) expression. Furthermore, the beneficial effects of DPP4 inhibition or knockdown on endothelial cell senescence were at least partly dependent on SIRT1 and Nrf2 activation. In conclusion, our study demonstrated that DPP4 inhibition or silencing ameliorated endothelial senescence both in vivo and in vitro by regulating AMPK/SIRT1/Nrf2. DPP4 may be a new therapeutic target to combat endothelial senescence.


Asunto(s)
Adamantano/análogos & derivados , Senescencia Celular/efectos de los fármacos , Dipéptidos/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Células Endoteliales/efectos de los fármacos , Proteínas/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Adamantano/administración & dosificación , Adamantano/farmacología , Animales , Células Cultivadas , Dipéptidos/administración & dosificación , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/administración & dosificación , Células Endoteliales/metabolismo , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Interferencia de ARN , Ratas Sprague-Dawley , Sirtuina 1/metabolismo
13.
Shock ; 53(6): 761-771, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31318834

RESUMEN

BACKGROUND: Sepsis is a life-threatening organ dysfunction initiated by a dysregulated response to infection, with imbalanced inflammation and immune homeostasis. Macrophages play a pivotal role in sepsis. N-[1-(1-oxopropyl)-4-piperidinyl]-N'-[4-(trifluoromethoxy)phenyl)-urea (TPPU) is an inhibitor of soluble epoxide hydrolase (sEH), which can rapidly hydrolyze epoxyeicosatrienoic acids (EETs) to the bio-inactive dihydroxyeicosatrienoic acids. TPPU was linked with the regulation of macrophages and inflammation. Here, we hypothesized that sEH inhibitor TPPU ameliorates cecal ligation and puncture (CLP)-induced sepsis by regulating macrophage functions. METHODS: A polymicrobial sepsis model induced by CLP was used in our study. C57BL/6 mice were divided into four groups: sham+ phosphate buffer saline (PBS), sham+TPPU, CLP+PBS, CLP+TPPU. Mice were observed 48 h after surgery to assess the survival rate. For other histological examinations, mice were sacrificed 6 h after surgery. Macrophage cell line RAW264.7 was used for in vitro studies. RESULTS: TPPU treatment, accompanied with increased EETs levels, markedly improved the survival of septic mice induced by CLP surgery, which was associated with alleviated organ damage and dysfunction triggered by systemic inflammatory response. Moreover, TPPU treatment significantly inhibited systemic inflammatory response via EETs-induced inactivation of mitogen-activated protein kinase signaling due to enhanced macrophage phagocytic ability and subsequently reduced bacterial proliferation and dissemination, and decreased inflammatory factors release. CONCLUSION: sEH inhibitor TPPU ameliorates cecal ligation and puncture-induced sepsis by regulating macrophage functions, including improved phagocytosis and reduced inflammatory response. Our data indicate that sEH inhibition has potential therapeutic effects on polymicrobial-induced sepsis.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Epóxido Hidrolasas/antagonistas & inhibidores , Macrófagos/efectos de los fármacos , Compuestos de Fenilurea/uso terapéutico , Piperidinas/uso terapéutico , Sepsis/tratamiento farmacológico , Animales , Ciego/lesiones , Modelos Animales de Enfermedad , Citometría de Flujo , Inflamación/tratamiento farmacológico , Inflamación/etiología , Ligadura , Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Fagocitosis , Sepsis/mortalidad
14.
Clin Cardiol ; 43(3): 235-241, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31777973

RESUMEN

The optimal antiplatelet therapy after percutaneous coronary intervention (PCI) remains to be elucidated. Monotherapy with a P2Y12 inhibitor may be inferior to dual antiplatelet therapy in patients after PCI. PubMed, EMBASE (by Ovidsp), Web of Science, and The Cochrane Library were searched from database inception to 2 October 2019. The composite of cardiovascular outcomes, all-cause mortality, myocardial infarction (MI), stroke, stent thrombosis, and major bleeding were evaluated. Pooled outcomes were presented as relative risk (RR) and 95% confidence intervals (CIs). A total of four trials randomizing 29 089 participants were included. Compared with the dual antiplatelet therapy group (n = 14 559), the P2Y12 inhibitor monotherapy group (n = 14 530) significantly decreased the incidence of bleeding events (2.0% vs 3.1%; RR: 0.60; 95% CI: 0.43-0.84; P = .005). There were no significant differences in all-cause mortality (1.3% vs 1.5%; RR: 0.87; 95% CI, 0.71-1.06; P = .16), myocardial infarction (2.1% vs 1.9%; RR, 1.06; 95% CI, 0.90-1.25; P = .46), stroke (0.6% vs 0.5%; RR, 1.18; 95% CI, 0.67-2.07; P = .57), or stent thrombosis (0.5% vs 0.4%; RR, 1.14; 95% CI, 0.81-1.61; P = .44) between the two groups. P2Y12 inhibitor monotherapy did not show any significant difference in the adverse cardiac and cerebrovascular events, but markedly decreased the risk of bleeding among patients after PCI vs dual antiplatelet therapy. However, it still needs to be further confirmed due to limited data.


Asunto(s)
Plaquetas/efectos de los fármacos , Enfermedad de la Arteria Coronaria/terapia , Intervención Coronaria Percutánea , Inhibidores de Agregación Plaquetaria/uso terapéutico , Antagonistas del Receptor Purinérgico P2Y/uso terapéutico , Receptores Purinérgicos P2Y12/efectos de los fármacos , Anciano , Plaquetas/metabolismo , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/mortalidad , Trombosis Coronaria/mortalidad , Trombosis Coronaria/prevención & control , Femenino , Hemorragia/inducido químicamente , Humanos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/mortalidad , Infarto del Miocardio/prevención & control , Intervención Coronaria Percutánea/efectos adversos , Intervención Coronaria Percutánea/instrumentación , Intervención Coronaria Percutánea/mortalidad , Inhibidores de Agregación Plaquetaria/efectos adversos , Antagonistas del Receptor Purinérgico P2Y/efectos adversos , Ensayos Clínicos Controlados Aleatorios como Asunto , Receptores Purinérgicos P2Y12/sangre , Medición de Riesgo , Factores de Riesgo , Stents , Accidente Cerebrovascular/mortalidad , Accidente Cerebrovascular/prevención & control , Factores de Tiempo , Resultado del Tratamiento
15.
Mol Ther Oncolytics ; 15: 7-20, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31650021

RESUMEN

Cancer stem cells (CSCs) are the main cause of tumor generation, recurrence, metastasis, and therapy failure in various malignancies including colorectal cancer (CRC). Accumulating evidence suggests that tumor cells can acquire CSC characteristics through the epithelial-mesenchymal transition (EMT) process. However, the molecular mechanism of CSCs remains unclear. OCT4B1 is a transcript of OCT4, which is initially expressed in embryonic stem and carcinoma cells, and is involved in the regulation and maintenance of an undifferentiated state of stem cells. In this study, three-dimensional (3D) microspheres were confirmed as CRC stem cells. Compared with that of parental cells, their self-renewal ability was significantly increased, and OCT4B1 expression was increased and promoted the EMT process. The knockdown of OCT4B1 decreased the self-renewal of CSCs and reversed EMT. Moreover, OCT4B1 induced the expression of Polo-like kinase 1 (PLK1), which is a key regulator of EMT in tumor cells. Further examination showed that OCT4B1 regulated the miR-8064/PLK1 balance to exert its function. Taken together, our data suggest that OCT4B1 may be involved in regulating the self-renewal of colorectal CSCs through EMT, which is at least partially due to the miR-8064/PLK1 balance. This study indicates that OCT4B1 is a potential therapeutic target for CRC by targeting CSCs.

16.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 33(9): 1121-1126, 2019 Sep 15.
Artículo en Chino | MEDLINE | ID: mdl-31512453

RESUMEN

OBJECTIVE: To compare the effectiveness of the intermittent suture and the cosmetic suture in total knee arthroplasty (TKA). METHODS: A clinical data of 48 patients with knee osteoarthritis, who underwent initial TKA between January 2017 and April 2018, was retrospectively analyzed. Among them, 23 patients underwent intermittent suture (group A) and 25 patients underwent cosmetic suture (group B). There was no significant difference in gender, age, body mass index, disease duration, degrees of varus and valgus deformities, knee society score (KSS), visual analogue scale (VAS) score, and levels of interleukin-6 (IL-6), procalcitonin (PCT), C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) in serum before operation between the two groups ( P>0.05). KSS scores at 1 and 6 months after operation were used to assess the knee function. VAS scores at 1, 3, and 5 days after operation were used to assess the pain degree of knee. Levels of IL-6, PCT, CRP, and ESR in serum at 1 day and 1 month after operation were recorded to evaluate the risk of periprosthetic infection. Likert score at 6 months after operation was used to evaluate the satisfaction of incision. The hospitalization time after operation was also recorded. RESULTS: All patients were followed up 7- 17 months (mean, 11.3 months). There was no significant difference in hospitalization time after operation between two groups ( t=-1.907, P=0.063). The Likert score in group A was significantly lower than that in group B ( t=-2.196, P=0.033). The VAS score, KSS clinical score and KSS functional score at different time points after operation were significantly better than those before operation in two groups ( P<0.05). The VAS score at 5 days after operation was better than that at 1 day after operation in two groups, and the KSS clinical score and KSS functional score at 6 months after operation were better than those at 1 month after operation in two groups, all showing significant differences ( P<0.05). The VAS scores at 3 and 5 days after operation were significantly lower in group B than in group A ( P<0.05), and there was no significant difference in VAS score and KSS scores between two groups at other time points after operation ( P>0.05). There was no significant difference in the levels of IL-6, PCT, CRP, and ESR between the two groups at different time points after operation ( P>0.05). CONCLUSION: Cosmetic suture is superior to intermittent suture in incision appearance and pain management, but there is no significant difference in short-term joint function and risk of periprosthetic infection after TKA.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Articulación de la Rodilla , Osteoartritis de la Rodilla , Suturas , Artroplastia de Reemplazo de Rodilla/métodos , Humanos , Articulación de la Rodilla/cirugía , Osteoartritis de la Rodilla/cirugía , Estudios Retrospectivos , Suturas/normas , Resultado del Tratamiento
17.
Life Sci ; 192: 293-303, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29129773

RESUMEN

AIMS: Gambogic acid (GA) is one of active components of Chinese medicine gamboges resin. Diabetic retinopathy (DR) is a most serious microvascular complication of diabetes and also the leading cause of blindness. The aim of this study is to evaluate the beneficial effect of GA on diabetes-induced retinal angiogenesis and further explore the potential mechanisms. MATERIAL AND METHODS: High glucose (HG)-treated RF/6A cells and STZ-induced diabetic mice were used as in vitro and in vivo models. Then the effects of GA on proliferation, migration and tube formation in RF/6A cells and pathomorphological changes in STZ-induced diabetic mice were determined. The activation of HIF-1α/VEGF and PI3K/AKT signaling pathways was assessed by various molecular biological experiments. KEY FINDINGS: According to our results, GA inhibited HG-induced proliferation, migration and tube formation in choroid-retinal endothelial RF/6A cells. The upregulation of HIF-1α and VEGF induced by HG in RF/6A cells was restrained by GA treatment significantly. Moreover, GA suppressed retinal pathomorphological changes and angiogenesis in STZ-induced diabetic mice in vivo, and also inhibited the activation of HIF-1α/VEGF pathway induced by diabetics. Finally, GA suppressed the activation of PI3K/AKT signaling pathway in STZ-induced diabetic mice in vivo and in HG-induced RF/6A cells in vitro. Further activation of PI3K/AKT pathway by IGF-1 restrained the beneficial effect of GA in RF/6A cells. SIGNIFICANCE: Our results provide evidence that GA may ameliorate diabetes-induced retinal angiogenesis, which are proofs that GA may be developed as a potential drug for treating DR.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Retinopatía Diabética/tratamiento farmacológico , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Xantonas/uso terapéutico , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Glucosa/farmacología , Macaca mulatta , Masculino , Ratones Endogámicos C57BL , Proteína Oncogénica v-akt/antagonistas & inhibidores , Inhibidores de las Quinasa Fosfoinosítidos-3 , Neovascularización Retiniana/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
18.
Proc Natl Acad Sci U S A ; 114(7): 1637-1642, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28137885

RESUMEN

cGMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor that activates innate immune responses. cGAS catalyzes the synthesis of cGAMP, which functions as a second messenger that binds and activates the adaptor protein STING to induce type I interferons (IFNs) and other immune modulatory molecules. Here we show that cGAS is indispensable for the antitumor effect of immune checkpoint blockade in mice. Wild-type, but not cGAS-deficient, mice exhibited slower growth of B16 melanomas in response to a PD-L1 antibody treatment. Consistently, intramuscular delivery of cGAMP inhibited melanoma growth and prolonged the survival of the tumor-bearing mice. The combination of cGAMP and PD-L1 antibody exerted stronger antitumor effects than did either treatment alone. cGAMP treatment activated dendritic cells and enhanced cross-presentation of tumor-associated antigens to CD8 T cells. These results indicate that activation of the cGAS pathway is important for intrinsic antitumor immunity and that cGAMP may be used directly for cancer immunotherapy.


Asunto(s)
Inmunidad Innata/inmunología , Melanoma Experimental/inmunología , Nucleótidos Cíclicos/inmunología , Nucleotidiltransferasas/inmunología , Animales , Anticuerpos/administración & dosificación , Anticuerpos/inmunología , Anticuerpos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Células Cultivadas , Reactividad Cruzada/efectos de los fármacos , Reactividad Cruzada/inmunología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Inmunidad Innata/efectos de los fármacos , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleótidos Cíclicos/administración & dosificación , Nucleótidos Cíclicos/farmacología , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Análisis de Supervivencia
19.
J Mol Recognit ; 29(2): 95-101, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26414320

RESUMEN

Microvilli are a common structure found on epithelial cells that increase the apical surface thus enhancing the transmembrane transport capacity and also serve as one of the cell's mechanosensors. These structures are composed of microfilaments and cytoplasm, covered by plasma membrane. Epithelial cell function is usually coupled to the density of microvilli and its individual size illustrated by diseases, in which microvilli degradation causes malabsorption and diarrhea. Atomic force microscopy (AFM) has been widely used to study the topography and morphology of living cells. Visualizing soft and flexible structures such as microvilli on the apical surface of a live cell has been very challenging because the native microvilli structures are displaced and deformed by the interaction with the probe. PeakForce Tapping® is an AFM imaging mode, which allows reducing tip-sample interactions in time (microseconds) and controlling force in the low pico-Newton range. Data acquisition of this mode was optimized by using a newly developed PeakForce QNM-Live Cell probe, having a short cantilever with a 17-µm-long tip that minimizes hydrodynamic effects between the cantilever and the sample surface. In this paper, we have demonstrated for the first time the visualization of the microvilli on living kidney cells with AFM using PeakForce Tapping. The structures observed display a force dependence representing either the whole microvilli or just the tips of the microvilli layer. Together, PeakForce Tapping allows force control in the low pico-Newton range and enables the visualization of very soft and flexible structures on living cells under physiological conditions.


Asunto(s)
Células Epiteliales/ultraestructura , Procesamiento de Imagen Asistido por Computador/métodos , Microvellosidades/ultraestructura , Animales , Perros , Riñón/citología , Células de Riñón Canino Madin Darby , Microscopía de Fuerza Atómica/métodos
20.
Exp Biol Med (Maywood) ; 240(4): 458-66, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25005166

RESUMEN

Epigenetic changes have been recently recognized as important in many human cancers. Enhancer of zeste homologue 2 (EZH2)gene has shown overexpression in various human cancers, consistent with a straightforward role of EZH2 as an oncogene, but its function in carcinogenesis is partly contradictory. The role of EZH2 in development of human colorectal cancer (CRC) has not yet been clarified. In present study, we observed up-regulation of EZH2 expression in tumor tissues from CRC patients [corrected]. The expression of EZH2 in CRC cell lines is consistent with the trend in cancer tissues using RT-PCR. We showed that TNM stage and lymph node metastasis in CRC patients are significantly correlated with EZH2 expression levels [corrected]. EZH2 level of transcription and protein was inhibited by small interfering RNA (siRNA). More importantly, EZH2-siRNA inhibited the proliferation and migration of SW620 cells while promoting their apoptosis, and inducing G0/G1 cell cycle arrest of CRC cells. Collectively, our results suggest that upregulated EZH2 expression may contribute to the progression of the patients with CRC. A comprehensive study of epigenetic mechanisms and the relevance of EZH2 in CRC is important for fully understanding this disease and as a basis for developing new treatment options in patients with CRC [corrected].


Asunto(s)
Adenocarcinoma/patología , Apoptosis/fisiología , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Neoplasias Colorrectales/patología , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/metabolismo , Proteína Potenciadora del Homólogo Zeste 2 , Femenino , Humanos , Técnicas In Vitro , Masculino , Persona de Mediana Edad , Complejo Represivo Polycomb 2/efectos de los fármacos , Complejo Represivo Polycomb 2/metabolismo , Pronóstico , ARN Interferente Pequeño/farmacología , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA