Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Environ Res ; 216(Pt 3): 114680, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36332672

RESUMEN

Carbonaceous matter (CM) (such as water-insoluble organic carbon (WIOC), black carbon (BC), and water-soluble organic carbon (WSOC)) has a significant impact on the carbon cycle and radiative forcing (RF) of glacier. Precipitation samples and glacier's snow/ice samples (snowpit, surface snow, and granular ice) (Xiao dongkemadi Glacier) were collected at the Dongkemadi River Basin (DRB) in the central Tibetan Plateau (TP) between May and October 2016 to investigate the characteristics and roles of CM in the TP River Basin. WIOC, BC, and WSOC concentrations in precipitation were relatively higher than that in snowpit, but lower than that in surface snow/ice, with the wet deposition fluxes of 0.10 ± 0.002, 0.04 ± 0.001, and 0.12 ± 0.002 g C m-2 yr-1 at DRB, respectively. The positive matrix factorization model identified four major sources (biomass burning source, secondary precursors, secondary aerosol, and dust source) of CM in precipitation at DRB. Two source areas (South Asia and the interior of TP) contributing to the pollution at DRB were identified using a potential source contribution function model, a concentration-weighted trajectory method, and the back-trajectory model. Moreover, the light-absorption by WSOC in the ultraviolet region was 23.0%, 12.1%, and 3.4% relative to the estimated total light-absorption in precipitation, snowpit, and surface snow/ice, respectively. Optical indices analysis revealed that WSOC in snowpit samples presented higher molecular weight, while presented higher aromatic and higher molecule sizes in surface snow/ice and precipitation samples, respectively. RF by WSOC relative to that of BC was estimated to be 17.6 ± 17.6% for precipitation, 10.9 ± 5.8% for snowpit, and 10.7 ± 11.6% for surface snow/ice, respectively, during the melt season in the central TP River Basin. These results help us understand how CM affects glaciers, and they can be utilized to create policies and recommendations that efficiently reduce emissions.


Asunto(s)
Monitoreo del Ambiente , Ríos , Monitoreo del Ambiente/métodos , Tibet , Cubierta de Hielo , Hollín/análisis , Carbono/análisis , Agua/análisis
2.
Chemosphere ; 247: 125843, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31927231

RESUMEN

The Himalayan-Tibetan Plateau is a typical remote region with sparse air pollution. However, air pollution in cites of the inner Himalayan-Tibetan Plateau is relatively serious due to emissions from local residents. Carbonaceous aerosols are not only an important component of air pollutants that affect the health of local residents but also an important trigger of climate change. In this study, the annual wet and dry deposition rates of carbonaceous particles were investigated in Lhasa-a typical city in the Himalayan-Tibetan Plateau, by collecting precipitation and dry deposition samples and analyzing with a thermal-optical measurement protocol. The results showed that the in-situ annual wet deposition rates of water-insoluble organic carbon (WIOC) and black carbon (BC) were 169.6 and 19.4 mg m-2 yr-1, respectively, with the highest and lowest values occurring in the monsoon and non-monsoon periods, respectively. Both precipitation amounts and concentrations of WIOC and BC contributed to wet deposition rates. The dry deposition rates of WIOC and BC in Lhasa had an opposite seasonal variation to that of wet deposition, with annual average deposition rates of 2563.9 and 165.7 mg m-2 yr-1, respectively, which were much higher than those of the nearby glacier region and remote area. These values were also much higher than the results from modeling and empirical calculations, indicating that Lhasa is a high pollution point that cannot capture by models. The results in this study have significant implications for the transport of local emissions in Lhasa to the nearby remote and glacier regions.


Asunto(s)
Contaminantes Atmosféricos/análisis , Carbono/análisis , Monitoreo del Ambiente/métodos , Estaciones del Año , Aerosoles/análisis , Aerosoles/química , Ciudades , Polvo , Cubierta de Hielo , Hollín/análisis , Tibet
3.
Environ Sci Pollut Res Int ; 27(3): 2670-2676, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31836975

RESUMEN

At present, the glaciers in the Himalayas and the Tibetan Plateau (HTP) are retreating partly due to albedo reduction caused by deposited light-absorbing impurities such as mineral dust (MD) and black carbon (BC). Because BC also exists widely in MD from surface soil, it is necessary to further evaluate the contribution of BC from MD to the total BC at glacier region. This will help to improve the study of BC sources by considering the relative contributions from MD and direct combustion sources. Therefore, in this study, concentrations of total organic carbon (TOC) and fine particles of BC from 43 surface soil samples of the HTP were investigated. The contribution of BC from MD to total BC deposited at the glacier region was evaluated. The results showed strong correlations between TOC and BC of studied samples (R2 = 0.70, p < 0.01), suggesting that they have similar sources and activity characteristics. The average BC concentration of studied samples was 2.02 ± 1.55 mg g-1, much lower than those of particles deposited at the glacier region and other regions with high soil TOC concentration. The contributions of BC from MD to total surface BC at two glaciers of the inner HTP (Zhadang and Xiaodongkemadi) were 17.66 ± 10.84% and 20.70 ± 16.35%, respectively. Therefore, the contribution of MD to glacier melting of the HTP is higher than that of previously assumed after BC coming along with MD is considered. Because MD concentration is higher at north and west part of the HTP, the contributions of MD at these glacier regions should be larger than previously assumed.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Suelo , Hollín/análisis , Carbono , Cubierta de Hielo , Tibet
4.
J Environ Sci (China) ; 87: 389-397, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31791511

RESUMEN

Carbonaceous matter has an important impact on glacial retreat in the Tibetan Plateau, further affecting the water resource supply. However, the related studies on carbonaceous matter are still scarce in Geladaindong (GLDD) region, the source of the Yangtze River. Therefore, the concentration, source and variations of carbonaceous matter at Ganglongjiama (GLJM) glacier in GLDD region were investigated during the melting period in 2017, which could deepen our understanding on carbonaceous matter contribution to glacier melting. The results showed that dissolved organic carbon (DOC) concentration of snowpit samples (283 ±â€¯200 µg/L) was much lower than that of precipitation samples (624 ±â€¯361 µg/L), indicating that large parts of DOC could be rapidly leached from the snowpit during the melting process. In contrast, refractory black carbon (rBC) concentration measured by Single Particle Soot Photometer of snowpit samples (4.27 ±â€¯3.15 µg/L) was much higher than that of precipitation samples (0.97 ±â€¯0.49 µg/L). Similarly, DOC with high mass absorption cross-section measured at 365 nm value was also likely to enrich in snowpit during the melting process. In addition, it was found that both rBC and DOC with high light-absorbing ability began to leach from the snowpit when melting process became stronger. Therefore, rBC and DOC with high light-absorbing ability exhibited similar behavior during the melting process. Based on relationship among DOC, rBC and K+ in precipitation, the main source of carbonaceous matter in GLJM glacier was biomass burning during the study period.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Ríos/química , Biomasa , Carbono , Fraccionamiento Químico , Cubierta de Hielo/química , Hollín
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA