Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 169, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38880883

RESUMEN

BACKGROUND: Cancer is characterized by dysregulated cellular metabolism. Thus, understanding the mechanisms underlying these metabolic alterations is important for developing targeted therapies. In this study, we investigated the pro-tumoral effect of PDZ and LIM domain 2 (PDLIM2) downregulation in lung cancer growth and its association with the accumulation of mitochondrial ROS, oncometabolites and the activation of hypoxia-inducible factor-1 (HIF-1) α in the process. METHODS: Databases and human cancer tissue samples were analyzed to investigate the roles of PDLIM2 and HIF-1α in cancer growth. DNA microarray and gene ontology enrichment analyses were performed to determine the cellular functions of PDLIM2. Seahorse assay, flow cytometric analysis, and confocal microscopic analysis were employed to study mitochondrial functions. Oncometabolites were analyzed using liquid chromatography-mass spectrometry (LC-MS). A Lewis lung carcinoma (LLC) mouse model was established to assess the in vivo function of PDLIM2 and HIF-1α. RESULTS: The expression of PDLIM2 was downregulated in lung cancer, and this downregulation correlated with poor prognosis in patients. PDLIM2 highly regulated genes associated with mitochondrial functions. Mechanistically, PDLIM2 downregulation resulted in NF-κB activation, impaired expression of tricarboxylic acid (TCA) cycle genes particularly the succinate dehydrogenase (SDH) genes, and mitochondrial dysfunction. This disturbance contributed to the accumulation of succinate and other oncometabolites, as well as the buildup of mitochondrial reactive oxygen species (mtROS), leading to the activation of hypoxia-inducible factor 1α (HIF-1α). Furthermore, the expression of HIF-1α was increased in all stages of lung cancer. The expression of PDLIM2 and HIF-1α was reversely correlated in lung cancer patients. In the animal study, the orally administered HIF-1α inhibitor, PX-478, significantly reduces PDLIM2 knockdown-promoted tumor growth. CONCLUSION: These findings shed light on the complex action of PDLIM2 on mitochondria and HIF-1α activities in lung cancer, emphasizing the role of HIF-1α in the tumor-promoting effect of PDLIM2 downregulation. Additionally, they provide new insights into a strategy for precise targeted treatment by suggesting that HIF-1α inhibitors may serve as therapy for lung cancer patients with PDLIM2 downregulation.


Asunto(s)
Regulación hacia Abajo , Subunidad alfa del Factor 1 Inducible por Hipoxia , Proteínas con Dominio LIM , Mitocondrias , Especies Reactivas de Oxígeno , Humanos , Proteínas con Dominio LIM/metabolismo , Proteínas con Dominio LIM/genética , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Línea Celular Tumoral , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Carcinoma Pulmonar de Lewis/genética , Regulación Neoplásica de la Expresión Génica , Femenino , Masculino
2.
Biochem Biophys Res Commun ; 720: 150066, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38749193

RESUMEN

Alveolar and interstitial macrophages play crucial roles in eradicating pathogens and transformed cells in the lungs. The immune checkpoint CD47, found on normal and malignant cells, interacts with the SIRPα ligand on macrophages, inhibiting phagocytosis, antigen presentation, and promoting immune evasion. In this study, we demonstrated that CD47 is not only a transmembrane protein, but that it is also highly concentrated in extracellular vesicles from lung cancer cell lines and patient plasma. Abundant CD47 was observed in the cytoplasm of lung cancer cells, aligning with our finding that it was packed into extracellular vesicles for physiological and pathological functions. In our clinical cohort, extracellular vesicle CD47 was significantly higher in the patients with early-stage lung cancer, emphasizing innate immunity inactivation in early tumor progression. To validate our hypothesis, we established an orthotopic xenograft model mimicking lung cancer development, which showed increased serum soluble CD47 and elevated IL-10/TNF-α ratio, indicating an immune-suppressive tumor microenvironment. CD47 expression led to reduced tumor-infiltrating macrophages during progression, while there was a post-xenograft increase in tumor-associated macrophages. In conclusion, CD47 is pivotal in early lung cancer progression, with soluble CD47 emerging as a key pathological effector.


Asunto(s)
Antígeno CD47 , Progresión de la Enfermedad , Neoplasias Pulmonares , Antígeno CD47/metabolismo , Antígeno CD47/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Humanos , Animales , Línea Celular Tumoral , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Ratones , Escape del Tumor , Evasión Inmune , Microambiente Tumoral/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Femenino , Estadificación de Neoplasias
3.
Biochem Biophys Res Commun ; 696: 149489, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38244313

RESUMEN

Lung cancer has a high incidence rate and requires more effective treatment strategies and drug options for clinical patients. EGFR is a common genetic alteration event in lung cancer that affects patient survival and drug strategy. Our study discovered aberrant aldolase A (ALDOA) expression and dysfunction in lung cancer patients with EGFR mutations. In addition to investigating relevant metabolic processes like glucose uptake, lactate production, and ATPase activity, we examined multi-omics profiles (transcriptomics, proteomics, and pull-down assays). It was observed that phosphodiesterase 3A (PDE3A) enzyme and ALDOA exhibit correlation, and furthermore, they impact M2 macrophage polarization through ß-catenin and downstream ID3. In addition to demonstrating the aforementioned mechanism of action, our experiments discovered that the PDE3 inhibitor trequinsin has a substantial impact on lung cancer cell lines with EGFR mutants. The trequinsin medication was found to decrease the M2 macrophage polarization status and several cancer phenotypes, in addition to transduction. These findings have potential prognostic and therapeutic applications for clinical patients with EGFR mutation and lung cancer.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Fructosa-Bifosfato Aldolasa/genética , beta Catenina/genética , beta Catenina/metabolismo , Transducción de Señal/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Línea Celular Tumoral , Mutación , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Inhibidoras de la Diferenciación/genética
4.
Adv Sci (Weinh) ; 11(11): e2306373, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38204202

RESUMEN

Detecting pancreatic duct adenocarcinoma (PDAC) in its early stages and predicting late-stage patient prognosis undergoing chemotherapy is challenging. This work shows that the activation of specific oncogenes leads to elevated expression of mRNAs and their corresponding proteins in extracellular vesicles (EVs) circulating in blood. Utilizing an immune lipoplex nanoparticle (ILN) biochip assay, these findings demonstrate that glypican 1 (GPC1) mRNA expression in the exosomes-rich (Exo) EV subpopulation and GPC1 membrane protein (mProtein) expression in the microvesicles-rich (MV) EV subpopulation, particularly the tumor associated microvesicles (tMV), served as a viable biomarker for PDAC. A combined analysis effectively discriminated early-stage PDAC patients from benign pancreatic diseases and healthy donors in sizable clinical from multiple hospitals. Furthermore, among late-stage PDAC patients undergoing chemotherapy, lower GPC1 tMV-mProtein and Exo-mRNA expression before treatment correlated significantly with prolonged overall survival. These findings underscore the potential of vesicular GPC1 expression for early PDAC screenings and chemotherapy prognosis.


Asunto(s)
Carcinoma Ductal Pancreático , Vesículas Extracelulares , Neoplasias Pancreáticas , Humanos , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Vesículas Extracelulares/metabolismo , Glipicanos/genética , Glipicanos/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Nat Commun ; 14(1): 6692, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872156

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) tumours carry multiple gene mutations and respond poorly to treatments. There is currently an unmet need for drug carriers that can deliver multiple gene cargoes to target high solid tumour burden like PDAC. Here, we report a dual targeted extracellular vesicle (dtEV) carrying high loads of therapeutic RNA that effectively suppresses large PDAC tumours in mice. The EV surface contains a CD64 protein that has a tissue targeting peptide and a humanized monoclonal antibody. Cells sequentially transfected with plasmid DNAs encoding for the RNA and protein of interest by Transwell®-based asymmetric cell electroporation release abundant targeted EVs with high RNA loading. Together with a low dose chemotherapy drug, Gemcitabine, dtEVs suppress large orthotopic PANC-1 and patient derived xenograft tumours and metastasis in mice and extended animal survival. Our work presents a clinically accessible and scalable way to produce abundant EVs for delivering multiple gene cargoes to large solid tumours.


Asunto(s)
Carcinoma Ductal Pancreático , Vesículas Extracelulares , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Desoxicitidina/uso terapéutico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/metabolismo , ARN , Vesículas Extracelulares/metabolismo , Línea Celular Tumoral , Neoplasias Pancreáticas
6.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37569525

RESUMEN

The immune checkpoint inhibitor/tyrosine kinase inhibitor (ICI/TKI) combination treatment is currently the first-line treatment for metastatic renal cell carcinoma (mRCC). However, its efficacy beyond the third-line setting is expected to be relatively poor, and high-grade toxicities can develop by prior exposure to multiple drugs, resulting in a relatively poor performance in patients. Determining the best treatment regimen and sequence remains difficult and requires further investigation in patients with mRCC. In this study, two cases of mRCC, who failed several lines of TKI and nivolumab but exhibited a good anticancer effect after rechallenging with axitinib, are described. Both patients had a faster time to best response and better progression-free survival (PFS) than during previous treatments. Moreover, the axitinib dose could be reduced to 2.5 mg daily when used in combination with nivolumab while continuing to exert an impressive anticancer effect. To determine the cytotoxic effect, we performed a lymphocyte activation test and found that the level of granzyme B released by cytotoxic T lymphocytes and natural killer cells was higher when axitinib was combined with nivolumab. To evaluate this result, a bioinformatics approach was used to analyze the PRISM database. In conclusion, based on the results of a lymphocyte activation test and PD-1 expression, our findings indicate that sequential therapy with axitinib rechallenge after nivolumab resistance is reasonable for the treatment of mRCC.

7.
Cell Commun Signal ; 21(1): 184, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488534

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a highly prevalent cancer type with limited targeted therapies available and 5-year survival rate, particularly for late-stage patients. There have been numerous attempts to repurpose drugs to tackle this problem. It has been reported that autophagy inducers could augment the effect of certain chemotherapeutic agents by enhancing immunogenic cell death (ICD). METHODS: In this study, we employed bioinformatics tools to identify thioridazine (THD), an antipsychotic drug, and found that it could induce autophagy and ICD in CRC. Then in vitro and in vivo experiments were performed to further elucidate the molecular mechanism of THD in CRC. RESULTS: THD was found to induce endoplasmic reticulum (ER) stress in CRC cells by activating the eIF2α/ATF4/CHOP axis and facilitating the accumulation of secretory autophagosomes, leading to ICD. In addition, THD showed a remarkable ICD-activating effect when combined with oxaliplatin (OXA) to prevent tumor progression in the mouse model. CONCLUSIONS: Together, our findings suggest that the repurposed function of THD in inhibiting CRC involves the upregulation of autophagosomes and ER stress signals, promoting the release of ICD markers, and providing a potential candidate to enhance the clinical outcome for CRC treatment. Video Abstract.


Asunto(s)
Neoplasias Colorrectales , Tioridazina , Animales , Ratones , Tioridazina/farmacología , Factor 2 Eucariótico de Iniciación/metabolismo , Reposicionamiento de Medicamentos , Muerte Celular Inmunogénica , Autofagia , Neoplasias Colorrectales/tratamiento farmacológico , Apoptosis , Línea Celular Tumoral
8.
Int J Biol Sci ; 19(9): 2648-2662, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324949

RESUMEN

Head and neck cancer is a major cancer type, with high motility rates that reduce the quality of life of patients. Herein, we investigated the effectiveness and mechanism of a combination therapy involving TLR9 activator (CpG-2722) and phosphatidylserine (PS)-targeting prodrug of SN38 (BPRDP056) in a syngeneic orthotopic head and neck cancer animal model. The results showed a cooperative antitumor effect of CpG-2722 and BPRDP056 owing to their distinct and complementary antitumor functions. CpG-2722 induced antitumor immune responses, including dendritic cell maturation, cytokine production, and immune cell accumulation in tumors, whereas BPRDP056 directly exerted cytotoxicity toward cancer cells. We also discovered a novel function and mechanism of TLR9 activation, which increased PS exposure on cancer cells, thereby attracting more BPRDP056 to the tumor site for cancer cell killing. Killed cells expose more PS in tumor for BPRDP056 targeting. Tumor antigens released from the dead cells were taken up by antigen-presenting cells, which enhanced the CpG-272-promoted T cell-mediated tumor-killing effect. These form a positive feed-forward antitumor effect between the actions of CpG-2722 and BPRDP056. Thus, the study findings suggest a novel strategy of utilizing the PS-inducing function of TLR9 agonists to develop combinational cancer treatments using PS-targeting drugs.


Asunto(s)
Neoplasias , Profármacos , Animales , Receptor Toll-Like 9 , Fosfatidilserinas , Profármacos/farmacología , Profármacos/uso terapéutico , Calidad de Vida , Inmunidad
9.
PLoS One ; 18(5): e0286032, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37205704

RESUMEN

Identifying essential targets in the genome-scale metabolic networks of cancer cells is a time-consuming process. The present study proposed a fuzzy hierarchical optimization framework for identifying essential genes, metabolites and reactions. On the basis of four objectives, the present study developed a framework for identifying essential targets that lead to cancer cell death and evaluating metabolic flux perturbations in normal cells that have been caused by cancer treatment. Through fuzzy set theory, a multiobjective optimization problem was converted into a trilevel maximizing decision-making (MDM) problem. We applied nested hybrid differential evolution to solve the trilevel MDM problem to identify essential targets in genome-scale metabolic models for five consensus molecular subtypes (CMSs) of colorectal cancer. We used various media to identify essential targets for each CMS and discovered that most targets affected all five CMSs and that some genes were CMS-specific. We obtained experimental data on the lethality of cancer cell lines from the DepMap database to validate the identified essential genes. The results reveal that most of the identified essential genes were compatible with the colorectal cancer cell lines obtained from DepMap and that these genes, with the exception of EBP, LSS, and SLC7A6, could generate a high level of cell death when knocked out. The identified essential genes were mostly involved in cholesterol biosynthesis, nucleotide metabolisms, and the glycerophospholipid biosynthetic pathway. The genes involved in the cholesterol biosynthetic pathway were also revealed to be determinable, if a cholesterol uptake reaction was not induced when the cells were in the culture medium. However, the genes involved in the cholesterol biosynthetic pathway became non-essential if such a reaction was induced. Furthermore, the essential gene CRLS1 was revealed as a medium-independent target for all CMSs.


Asunto(s)
Neoplasias Colorrectales , Genes Esenciales , Humanos , Genes Esenciales/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética
10.
Curr Drug Deliv ; 20(7): 1015-1029, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35473527

RESUMEN

BACKGROUND: Chemoresistance continues to limit the recovery of patients with cancer. New strategies, such as combination therapy or nanotechnology, can be further improved. OBJECTIVE: In this study, we applied the computational strategy by exploiting two databases (CellMiner and Prism) to sort out the cell lines sensitive to both anti-cancer drugs, paclitaxel (PTX) and dihydroartemisinin (DHA); both of which are potentially synergistic in several cell lines. METHODS: The combination of PTX and DHA was screened at different ratios to select the optimal ratio that could inhibit lung adenocarcinoma NCI-H23 the most. To further enhance therapeutic efficacy, these combinations of drugs were incorporated into a nanosystem. RESULTS: At a PTX:DHA ratio of 1:2 (w/w), the combined drugs obtained the best combination index (0.84), indicating a synergistic effect. The drug-loaded nanoparticles sized at 135 nm with the drug loading capacity of 15.5 ± 1.34 and 13.8 ± 0.56 corresponding to DHA and PTX, respectively, were used. The nano-sized particles improved drug internalization into the cells, resulting in the significant inhibition of cell growth at all tested concentrations (p < 0.001). Additionally, α-tubulin aggregation, DNA damage suggested the molecular mechanism behind cell death upon PTX-DHA-loaded nanoparticle treatment. Moreover, the rate of apoptosis increased from approximately 5% to more than 20%, and the expression of apoptotic proteins changed 4 and 3 folds corresponding to p-53 and Bcl-2, respectively. CONCLUSION: This study was designed thoroughly by screening cell lines for the optimization of formulations. This novel approach could pave the way for the selection of combined drugs for precise cancer treatment.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Sinergismo Farmacológico , Detección Precoz del Cáncer , Paclitaxel/farmacología , Antineoplásicos/farmacología , Apoptosis , Nanotecnología , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico
11.
J Biomed Sci ; 29(1): 103, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36457117

RESUMEN

BACKGROUND: Rab37-mediated exocytosis of tissue inhibitor of metalloproteinase 1 (TIMP1), an inflammatory cytokine, under serum-depleted conditions which leads to suppression of lung cancer cell metastasis has been reported. Starvation is also a stimulus of autophagic activity. Herein, we reveal that starvation activates Rab37 and induces autophagy. METHODS: We used an overexpression/knockdown system to determine the relationship between autophagy and Rab37 in vitro and in vivo. The autophagy activity was detected by immunoblotting, transmission electron microscope, autophagosome purification, and immunofluorescence under the confocal microscope. Lung-to-lung metastasis mouse model was used to clarify the role of autophagy and Rab37 in lung cancer. Clinical lung cancer patient specimens and an online big database were analyzed. RESULTS: Initially, we demonstrated that active-form Rab37 increased LC3-II protein level (the marker of autophagosome) and TIMP1 secretion. Accordingly, silencing of Rab37 gene expression alleviated Rab37 and LC3-II levels as well as TIMP1 secretion, and induction of autophagy could not increase TIMP1 exocytosis under such conditions. Moreover, silencing the Atg5 or Atg7 gene of lung cancer cells harboring active-mutant Rab37 (Q89L) led to decreased autophagy activity and TIMP1 secretion. In the lung-to-lung metastasis mouse model, increased TIMP1 expression accompanied by amiodarone-induced autophagy led to decreased tumor nodules and cancer cell metastasis. These phenomena were reversed by silencing the Atg5 or Atg7 gene. Notably, increasing autophagy activity alone showed no effect on TIMP1 secretion under either Rab37 or Sec22b silencing conditions. We further detected colocalization of LC3 with either Rab37 or TIMP1, identified Rab37 and Sec22b proteins in the purified autophagosomes of the lung cancer cells harboring the active-form Rab37 gene, and confirmed that these proteins are involved in the secretion of TIMP1. We reveal that autophagic activity was significantly lower in the tumors compared to the non-tumor parts and was associated with the overall lung cancer patient survival rate. CONCLUSIONS: We are the first to report that autophagy plays a promoting role in TIMP1 secretion and metastasis in a Rab37-dependent manner in lung cancer cells and the lung-to-lung mouse model.


Asunto(s)
Neoplasias Pulmonares , Inhibidor Tisular de Metaloproteinasa-1 , Proteínas de Unión al GTP rab , Animales , Ratones , Autofagosomas , Autofagia/genética , Modelos Animales de Enfermedad , Exocitosis , Neoplasias Pulmonares/genética , Inhibidor Tisular de Metaloproteinasa-1/genética , Proteínas de Unión al GTP rab/genética
12.
Cell Commun Signal ; 20(1): 200, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575468

RESUMEN

BACKGROUND: Despite advances in treatment, patients with refractory colorectal cancer (CRC) still have poor long-term survival, so there is a need for more effective therapeutic options. METHODS: To evaluate the HDAC8 inhibition efficacy as a CRC treatment, we examined the effects of various HDAC8 inhibitors (HDAC8i), including BMX (NBM-T-L-BMX-OS01) in combination with temozolomide (TMZ) or other standard CRC drugs on p53 mutated HT29 cells, as well as wild-type p53 HCT116 and RKO cells. RESULTS: We showed that HDAC8i with TMZ cotreatment resulted in HT29 arrest in the S and G2/M phase, whereas HCT116 and RKO arrest in the G0/G1 phase was accompanied by high sub-G1. Subsequently, this combination approach upregulated p53-mediated MGMT inhibition, leading to apoptosis. Furthermore, we observed the cotreatment also enabled triggering of cell senescence and decreased expression of stem cell biomarkers. Mechanistically, we found down-expression levels of ß-catenin, cyclin D1 and c-Myc via GSK3ß/ß-catenin signaling. Intriguingly, autophagy also contributes to cell death under the opposite status of ß-catenin/p62 axis, suggesting that there exists a negative feedback regulation between Wnt/ß-catenin and autophagy. Consistently, the Gene Set Enrichment Analysis (GSEA) indicated both apoptotic and autophagy biomarkers in HT29 and RKO were upregulated after treating with BMX. CONCLUSIONS: BMX may act as a HDAC8 eraser and in combination with reframed-TMZ generates a remarkable synergic effect, providing a novel therapeutic target for various CRCs. Video Abstract.


Asunto(s)
Apoptosis , Neoplasias Colorrectales , Inhibidores de Histona Desacetilasas , Temozolomida , Humanos , beta Catenina/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasas/metabolismo , Proteínas Represoras/metabolismo , Temozolomida/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Vía de Señalización Wnt , Inhibidores de Histona Desacetilasas/farmacología , Células HT29
13.
Tissue Eng Regen Med ; 19(6): 1295-1310, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36346531

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) are derived from internal cellular compartments, and have potential as a diagnostic and therapeutic tool in degenerative disease associated with aging. Mesenchymal stem cells (MSCs) have become a promising tool for functional EVs production. This study investigated the efficacy of EVs and its effect on differentiation capacity. METHODS: The characteristics of MSCs were evaluated by flow cytometry and stem cell differentiation analysis, and a production mode of functional EVs was scaled from MSCs. The concentration and size of EVs were quantitated by Nanoparticle Tracking Analysis (NTA). Western blot analysis was used to assess the protein expression of exosome-specific markers. The effects of MSC-derived EVs were assessed by chondrogenic and adipogenic differentiation analyses and histological observation. RESULTS: The range of the particle size of adipose-derived stem cells (ADSCs)- and Wharton's jelly -MSCs-derived EVs were from 130 to 150 nm as measured by NTA, which showed positive expression of exosomal markers. The chondrogenic induction ability was weakened in the absence of EVs in vitro. Interestingly, after EV administration, type II collagen, a major component in the cartilage extracellular matrix, was upregulated compared to the EV-free condition. Moreover, EVs decreased the lipid accumulation rate during adipogenic induction. CONCLUSION: The results indicated that the production model could facilitate production of effective EVs and further demonstrated the role of MSC-derived EVs in cell differentiation. MSC-derived EVs could be successfully used in cell-free therapy to guide chondrogenic differentiation of ADSC for future clinical applications in cartilage regeneration.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Adipogénesis , Condrocitos , Células Cultivadas , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular
14.
Nanoscale Adv ; 4(2): 377-386, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36132698

RESUMEN

Given the high incidence and mortality of cancer, current research is focused on designing efficient diagnostic methods. At present, clinical diagnoses are made based on X-ray, computed tomography, magnetic resonance imaging (MRI), ultrasound, and fiber optic endoscopy. MRI is a powerful diagnostic tool because it is non-invasive, has a high spatial resolution, uses non-ionizing radiation, and has good soft-tissue contrast. However, the long relaxation time of water protons may result in the inability to distinguish different tissues. To overcome this drawback of MRI, magnetic resonance contrast agents can enhance the contrast, improve the sensitivity of MRI-based diagnoses, increase the success rate of surgery, and reduce tumor recurrence. This review focuses on using iron-platinum (FePt) nanoparticles (NPs) in T2-weighted MRI to detect tumor location based on dark-field changes. In addition, existing methods for optimizing and improving FePt NPs are reviewed, and the MRI applications of FePt NPs are discussed. FePT NPs are expected to strengthen MRI resolution, thereby helping to inhibit tumor development.

15.
Front Oncol ; 12: 775541, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912234

RESUMEN

Purpose: Current treatment options for head and neck squamous cell carcinoma (HNSCC) are limited, especially for cases with cancer stem cell-induced chemoresistance and recurrence. The WNT signaling pathway contributes to maintenance of stemness via translocation of ß-catenin into the nucleus, and represents a promising druggable target in HNSCC. Dehydroepiandrosterone (DHEA), a steroid hormone, has potential as an anticancer drug. However, the potential anticancer mechanisms of DHEA including inhibition of stemness, and its therapeutic applications in HNSCC remain unclear. Methods: Firstly, SRB assay and sphere formation assay were used to examine cellular viability and cancer stem cell-like phenotype, respectively. The expressions of stemness related factors were measured by RT-qPCR and western blotting. The luciferase reporter assay was applied to evaluate transcriptional potential of stemness related pathways. The alternations of WNT signaling pathway were measured by nuclear translocation of ß-catenin, RT-qPCR and western blotting. Furthermore, to investigate the effect of drugs in vivo, both HNSCC orthotopic and subcutaneous xenograft mouse models were applied. Results: We found that DHEA reduced HNSCC cell viability, suppressed sphere formation, and inhibited the expression of cancer-stemness markers, such as BMI-1 and Nestin. Moreover, DHEA repressed the transcriptional activity of stemness-related pathways. In the WNT pathway, DHEA reduced the nuclear translocation of the active form of ß-catenin and reduced the protein expression of the downstream targets, CCND1 and CD44. Furthermore, when combined with the chemotherapeutic drug, irinotecan (IRN), DHEA enhanced the sensitivity of HNSCC cells to IRN as revealed by reduced cell viability, sphere formation, expression of stemness markers, and activation of the WNT pathway. Additionally, this combination reduced in vivo tumor growth in both orthotopic and subcutaneous xenograft mouse models. Conclusion: These findings indicate that DHEA has anti-stemness potential in HNSCC and serves as a promising anticancer agent. The combination of DHEA and IRN may provide a potential therapeutic strategy for patients with advanced HNSCC.

16.
J Cell Mol Med ; 26(15): 4305-4321, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35794816

RESUMEN

Lung cancer is the leading cause of cancer-associated death, with a global 5-year survival rate <20%. Early metastasis and recurrence remain major challenges for lung cancer treatment. The stemness property of cancer cells has been suggested to play a key role in cancer plasticity, metastasis and drug-resistance, and is a potential target for drug development. In this study, we found that in non-small cell lung cancer (NSCLC), BMI1 and MCL1 play crucial roles of cancer stemness including invasion, chemo-resistance and tumour initiation. JNK signalling serves as a link between oncogenic pathway or genotoxicity to cancer stemness. The activation of JNK, either by mutant EGFR or chemotherapy agent, stabilized BMI1 and MCL1 proteins through suppressing the expression of E3-ubiquitin ligase HUWE1. In lung cancer patient samples, high level of BMI1 is correlated with poor survival, and the expression of BMI1 is positively correlated with MCL1. A novel small-molecule, BI-44, was developed, which effectively suppressed BMI1/MCL1 expressions and inhibited tumour formation and progression in preclinical models. Targeting cancer stemness mediated by BMI1/MCL1 with BI-44 provides the basis for a new therapeutic approach in NSCLC treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Células Madre Neoplásicas/metabolismo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
17.
Genomics Inform ; 20(1): e7, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35399006

RESUMEN

2-Methoxy-1,4-naphthoquinone (MNQ) has been shown to cause cytotoxic towards various cancer cell lines. This study is designed to investigate the regulatory effect of MNQ on the key cancer genes in mitogen-activated protein kinase, phosphoinositide 3-kinase, and nuclear factor κB signaling pathways. The expression levels of the genes were compared at different time point using polymerase chain reaction arrays and Ingenuity Pathway Analysis was performed to identify gene networks that are most significant to key cancer genes. A total of 43 differentially expressed genes were identified with 21 up-regulated and 22 down-regulated genes. Up-regulated genes were involved in apoptosis, cell cycle and act as tumor suppressor while down-regulated genes were involved in anti-apoptosis, angiogenesis, cell cycle and act as transcription factor as well as proto-oncogenes. MNQ exhibited multiple regulatory effects on the cancer key genes that targeting at cell proliferation, cell differentiation, cell transformation, apoptosis, reduce inflammatory responses, inhibits angiogenesis and metastasis.

18.
Biomolecules ; 12(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35327578

RESUMEN

Infrapatellar fat pad-derived mesenchymal stem cells (IPFP-MSCs) are a type of adipose-derived stem cell (ADSC). They potentially contribute to cartilage regeneration and modulation of the immune microenvironment in patients with osteoarthritis (OA). The ability of IPFP-MSCs to increase chondrogenic capacity has been reported to be greater, less age dependent, and less affected by inflammatory changes than that of other MSCs. Transcription-regulatory factors strictly regulate the cartilage differentiation of MSCs. However, few studies have explored the effect of transcriptional factors on IPFP-MSC-based neocartilage formation, cartilage engineering, and tissue functionality during and after chondrogenesis. Instead of intact MSCs, MSC-derived extracellular vesicles could be used for the treatment of OA. Furthermore, exosomes are increasingly being considered the principal therapeutic agent in MSC secretions that is responsible for the regenerative and immunomodulatory functions of MSCs in cartilage repair. The present study provides an overview of advancements in enhancement strategies for IPFP-MSC chondrogenic differentiation, including the effects of transcriptional factors, the modulation of released exosomes, delivery mechanisms for MSCs, and ethical and regulatory points concerning the development of MSC products. This review will contribute to the understanding of the IPFP-MSC chondrogenic differentiation process and enable the improvement of IPFP-MSC-based cartilage tissue engineering.


Asunto(s)
Cartílago Articular , Exosomas , Células Madre Mesenquimatosas , Osteoartritis , Tejido Adiposo/metabolismo , Diferenciación Celular , Condrogénesis/genética , Exosomas/genética , Humanos , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoartritis/terapia
19.
Nanoscale Horiz ; 7(4): 352-367, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35043812

RESUMEN

Recent studies have found that exosomes or extracellular vehicles (EVs) are associated with cancer metastasis, disease progression, diagnosis, and treatment, leading to a rapidly emerging area of exocrine vesicle research. Relying on the superior targeting function and bio-compatibility of exosomes, researchers have been able to deliver drugs to cancer stem cells deep within tumors in mouse models. Despite significant efforts made in this relatively new field of exosome research, progress has been held back by challenges such as inefficient separation methods, difficulties in characterization/tracking, and a lack of specific biomarkers. Therefore, current researches are devoted to combining nanomaterials with exosomes to improve these shortcomings. Adding inorganic/organic nanoparticles such as artificial liposomes and iron oxide can bring more drug options and various fluorescent or magnetic diagnostic possibilities to the exosome system. Moreover, the applications of exosomes need to be further evaluated under actual physiological conditions. This review article highlights the potential of exosome-biomimetic nanoparticles for their use as drug carriers to improve the efficacy of anticancer therapy.


Asunto(s)
Exosomas , Nanopartículas , Neoplasias , Animales , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Ratones , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico
20.
Nutrients ; 13(12)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34959868

RESUMEN

Declines in physiological functions are the predominant risk factors for age-related diseases, such as cancers and neurodegenerative diseases. Therefore, delaying the aging process is believed to be beneficial in preventing the onset of age-related diseases. Previous studies have demonstrated that Graptopetalum paraguayense (GP) extract inhibits liver cancer cell growth and reduces the pathological phenotypes of Alzheimer's disease (AD) in patient IPS-derived neurons. Here, we show that GP extract suppresses ß-amyloid pathology in SH-SYS5Y-APP695 cells and APP/PS1 mice. Moreover, AMP-activated protein kinase (AMPK) activity is enhanced by GP extract in U87 cells and APP/PS1 mice. Intriguingly, GP extract enhances autophagy in SH-SYS5Y-APP695 cells, U87 cells, and the nematode Caenorhabditis elegans, suggesting a conserved molecular mechanism by which GP extract might regulate autophagy. In agreement with its role as an autophagy activator, GP extract markedly diminishes mobility decline in polyglutamine Q35 mutants and aged wild-type N2 animals in C. elegans. Furthermore, GP extract significantly extends lifespan in C. elegans.


Asunto(s)
Envejecimiento/efectos de los fármacos , Crassulaceae/química , Extractos Vegetales/farmacología , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Péptidos beta-Amiloides/efectos de los fármacos , Animales , Autofagia/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Humanos , Longevidad/efectos de los fármacos , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA