Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.070
Filtrar
1.
Front Pharmacol ; 15: 1400958, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966560

RESUMEN

Plant polysaccharides (PP) demonstrate a diverse array of biological and pharmacological properties. This comprehensive review aims to compile and present the multifaceted roles and underlying mechanisms of plant polysaccharides in various liver diseases. These diseases include non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), fibrosis, drug-induced liver injury (DILI), and hepatocellular carcinoma (HCC). This study aims to elucidate the intricate mechanisms and therapeutic potential of plant polysaccharides, shedding light on their significance and potential applications in the management and potential prevention of these liver conditions. An exhaustive literature search was conducted for this study, utilizing prominent databases such as PubMed, Web of Science, and CNKI. The search criteria focused on the formula "(plant polysaccharides liver disease) NOT (review)" was employed to ensure the inclusion of original research articles up to the year 2023. Relevant literature was extracted and analyzed from these databases. Plant polysaccharides exhibit promising pharmacological properties, particularly in the regulation of glucose and lipid metabolism and their anti-inflammatory and immunomodulatory effects. The ongoing progress of studies on the molecular mechanisms associated with polysaccharides will offer novel therapeutic strategies for the treatment of chronic liver diseases (CLDs).

2.
Biochem Pharmacol ; 227: 116422, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38996932

RESUMEN

Carnitine palmitoyltransferase 1C (CPT1C) is an enzyme that regulates tumor cell proliferation and metabolism by modulating mitochondrial function and lipid metabolism. Hypoxia, commonly observed in solid tumors, promotes the proliferation and progression of pancreatic cancer by regulating the metabolic reprogramming of tumor cells. So far, the metabolic regulation of hypoxic tumor cells by CPT1C and the upstream mechanisms of CPT1C remain poorly understood. Yin Yang 1 (YY1) is a crucial oncogene for pancreatic tumorigenesis and acts as a transcription factor that is involved in multiple metabolic processes. This study aimed to elucidate the relationship between YY1 and CPT1C under hypoxic conditions and explore their roles in hypoxia-induced proliferation and metabolic alterations of tumor cells. The results showed enhancements in the proliferation and metabolism of PANC-1 cells under hypoxia, as evidenced by increased cell growth, cellular ATP levels, up-regulation of mitochondrial membrane potential, and decreased lipid content. Interestingly, knockdown of YY1 or CPT1C inhibited hypoxia-induced rapid cell proliferation and vigorous cell metabolism. Importantly, for the first time, we reported that YY1 directly activated the transcription of CPT1C and clarified that CPT1C was a novel target gene of YY1. Moreover, the YY1 and CPT1C were found to synergistically regulate the proliferation and metabolism of hypoxic cells through transfection with YY1 siRNA to CRISPR/Cas9-CPT1C knockout PANC-1 cells. Taken together, these results indicated that the YY1-CPT1C axis could be a new target for the intervention of pancreatic cancer proliferation and metabolism.

3.
Acta Pharm Sin B ; 14(6): 2378-2401, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38828138

RESUMEN

For over two decades, the development of B-cell lymphoma-2 (Bcl-2) family therapeutics has primarily focused on anti-apoptotic proteins, resulting in the first-in-class drugs called BH3 mimetics, especially for Bcl-2 inhibitor Venetoclax. The pro-apoptotic protein Bcl-2-associated X protein (BAX) plays a crucial role as the executioner protein of the mitochondrial regulated cell death, contributing to organismal development, tissue homeostasis, and immunity. The dysregulation of BAX is closely associated with the onset and progression of diseases characterized by pathologic cell survival or death, such as cancer, neurodegeneration, and heart failure. In addition to conducting thorough investigations into the physiological modulation of BAX, research on the regulatory mechanisms of small molecules identified through biochemical screening approaches has prompted the identification of functional and potentially druggable binding sites on BAX, as well as diverse all-molecule BAX modulators. This review presents recent advancements in elucidating the physiological and pharmacological modulation of BAX and in identifying potentially druggable binding sites on BAX. Furthermore, it highlights the structural and mechanistic insights into small-molecule modulators targeting diverse binding surfaces or conformations of BAX, offering a promising avenue for developing next-generation apoptosis modulators to treat a wide range of diseases associated with dysregulated cell death by directly targeting BAX.

4.
Front Oncol ; 14: 1393687, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38894868

RESUMEN

Objectives: To avoid the oncologic risks of ipsilateral regional flaps, this study aimed to explore the feasibility and clinical outcomes of the contralateral-based facial artery myomucosal island flap (C-FAMMIF) for oral T2-T3 oncologic defects reconstruction. Methods: A study of flap anatomy was conducted on 7 cadaver samples and a cohort of 24 patients who received C-FAMMIF reconstruction after malignancy resection were retrospectively researched. A balanced anterolateral thigh flap (ALT) group of 47 patients was extracted as control group using propensity score matching method. Progression-free survival (PFS), functional outcomes, and donor site complications were assessed. Results: Consistent blood supply and drainage through facial artery and vein with median maximum pedicle length of 106 mm supported contralateral reconstruction. The superficial vein drainage pattern indicated safer flap harvest at contralateral neck under circumstances of ipsilateral neck dissections. The pedicle and marginal facial nerve formed three anatomical patterns. The surgical management of each was described. Patients with ipsilateral pN+ neck accounted for 41.7% and 40.4% in the C-FAMMIF and ALT group, respectively. The 2-year PFS rate between the C-FAMMIF and ALT groups was not significantly different (88.2% in C-FAMMIF group and 84.6% in ALT group, respectively, p = 0.6358). Promising recoveries were observed for swallowing function and tactile sensation. The donor sites healed upon primary closure without trismus or permanent facial palsy. Conclusion: Our findings suggested that C-FAMMIF is feasible and safe for T2-T3 oral oncologic defect reconstruction in patients with ipsilateral cN+ neck.

5.
Langmuir ; 40(26): 13728-13738, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38904776

RESUMEN

The prevalence of icing in nature has become a significant threat to human work and life, prompting the development of more energy-efficient active/passive combination anti-icing/deicing technologies. In order to overcome the disadvantage of the poor durability of superhydrophobic surfaces, lubricated surfaces inspired by nepenthes have been preferred. In this study, a paraffin and silicone oil-infused photothermal foam (PSIPF) with excellent overall performance was prepared using polypyrrole (PPy) as a photothermal conversion material, a mixture of silicone oil and paraffin as a lubricating fluid, and melamine foam (MF) as a carrier. The surface adhesive strength is less than 20 kPa at -20 °C, the melting time is only 1018 s at an irradiance of 200 W/m2 and -20 °C (0.2 sun), and surface droplets do not freeze within 1 h at -10 °C. Furthermore, the surface exhibits excellent mechanical durability and stability, maintaining optimal lubrication properties following repeated cycles of icing/deicing, water rinsing, and immersion for 2 days in acid and alkaline conditions. This photothermal lubricated surface with excellent anti-icing/deicing properties at low temperatures and in weak-light environments provides a wider range of applications for equipment at high latitudes and high altitudes.

6.
Environ Pollut ; 356: 124344, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38852660

RESUMEN

The co-cultivation of fungi with microalgae facilitates microalgae harvesting and enhances heavy metal adsorption. However, the mechanisms of fungal tolerance to cadmium (Cd) have not yet been studied in detail. In this study, functional groups of fungi were analyzed under Cd stress using Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and transmission electron microscope (TEM) to explore their morphology. Confocal laser scanning microscope (CLSM) was used to characterize the changes in the content of extracellular polysaccharides and proteins, and a decrease in the ratio of glutathione (GSH) to oxidized glutathione (GSSG) was monitored. The GSH and GSSG contents in mycelium were 7.4 and 7.9 times higher than that in the control, respectively. After 72 h of Cd treatment, the fungal extracellular polysaccharide and extracellular protein contents increased by 16 and 11.4 mg/g, respectively, compared to the control. This provided several functional groups for the complexation of Cd ions to enhance fungal Cd tolerance. The metabolomic and transcriptomic results revealed a total of 358 differential metabolites after 20, 48, and 72 h in the positive and negative ion modes, and the number of differential metabolites specific to each group was 104, 14, and 89, respectively. There were 927, 1167, and 1287 up-regulated genes, and 1301, 1480, and 1683 down-regulated genes at 20, 48, and 72 h, respectively. Energy metabolism, amino acid metabolism, and the ABC transport system are the key metabolic pathways for tolerance enhancement and heavy metal detoxification in fungi. The expression of S-cysteinosuccinic acid was significantly up-regulated after Cd stress and associated with enhanced fungal tolerance and resistance to Cd.

7.
Eur J Pharm Sci ; : 106839, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38906231

RESUMEN

Tacrolimus (FK506) is a cornerstone of GVHD-prophylaxis treatment in paediatrics undergoing haematopoietic stem cell transplantation (HSCT). However, due to concerns about highly inter/intra-individual variability, precision dosing of FK506 is crucial. Cytochrome P450(CYP) 3A4 and 3A5 are considered important sources of FK506 pharmacokinetic variability. Nevertheless, the impact of age-related maturation in hepatic and intestinal CYP3A4/3A5 enzymes remains unknown in paediatric HSCT patients. Physiologically-based pharmacokinetic (PBPK) models were developed and verified in adult volunteers and adult HSCT patients using GastroPlusTM (version 9.0), and then extrapolated to paediatric HSCT patients, taking into account the maturation of CYP3A4 and CYP3A5. Default CYP3A4 and CYP3A5 ontogeny profiles were updated based on the latest reports. The paediatric PBPK model was evaluated with independent data collected from Sun Yat-sen Memorial Hospital (86 paediatric HSCT patients, 1 to 16 -year-old). Simulations were performed to evaluate a reported FK506 dosing regimen in infants and children with different CYP3A5 genotypes. Extensive PBPK model validation indicated good predictability, with the predicted/observed (P/O) ratios within the range of 0.80-fold to 1.25-fold. Blood tacrolimus concentration-time curves were comparable between the real and virtual patients. Simulations showed that the higher levels of tacrolimus in 9-month-old to 3-year-old infants were mainly attributed to the CYP3A4/3A5 ontogeny profiles, which resulted in lower clearance and higher exposure relative to dose. The oral dosage of 0.1 mg/kg/day (q12 h) is considered appropriate for paediatric HSCT patients 9 months to 15 years of age with CYP3A5 *1/*1 genotypes. Lower doses were required for paediatric HSCT patients with CYP3A5 *1/*3 (0.08 mg/kg/day, q12h) or CYP3A5 *3/*3 genotypes (0.07 mg/kg/day, q12h), and analyses demonstrated 12.5%-20% decreases in ≤3-year-old patients. The study highlights the feasibility of PBPK modelling to explore age-related enzyme maturation in infants and children(≤3-year-old) undergoing HSCT and emphasizes the need to include hepatic and gut CYP3A4/3A5 maturation parameters.

8.
Histol Histopathol ; : 18765, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38841987

RESUMEN

BACKGROUND: This study was designed to explore whether hsa_circ_0070440 was dysregulated in prostate cancer (PCa), and assess the effects of hsa_circ_0070440 alteration on PCa prognosis and cell function. METHODS: The expression levels of hsa_circ_0070440 were assessed in PCa tissues and cell lines. After the classification of patients with PCa based on mean hsa_circ_0070440 level in 138 cases, Chi-square test and survival analyses (Kaplan-Meier method and multivariable Cox proportional hazards analysis) were performed to assess the predictive value of hsa_circ_0070440 in treatment failure (TTF), time to PSA progression (TTPP) and overall survival time. To examine the function of hsa_circ_0070440 in PCa cells, 22Rv1 and C4-2B cells were used for CCK-8 proliferation and Transwell migration assays. Hsa_circ_0070440- and TXNDC5-specific bindings with miR-382/383-5p were validated by bioinformatic analysis and luciferase gene reporter assay. RESULTS: An increased expression of hsa_circ_0070440 was found in PCA tissues and cell lines, associated with clinical T stage (p=0.021) and lymph node metastasis. Hsa_circ_0070440 predicted poor overall survival, TTPP, and TTF, acting as independent prognostic factors for overall survival, TTPP, and TTF in patients with PCa. Knockdown of hsa_circ_0070440 inhibited cell proliferation and migration in vitro. Furthermore, hsa_circ_0070440 could sponge miR-382/383-5p. TXNDC5 was a common target gene for miR-382/383-5p in PCa cells. CONCLUSION: This study demonstrated that hsa_circ_0070440 can predict the prognosis of PCa patients. Hsa_circ_0070440 can facilitate the proliferation and migration of PCa cells, possibly by sponging miR-382/383-5p.

9.
Cancer Lett ; 597: 217008, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38849012

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and it lacks specific therapeutic targets and effective treatment protocols. By analyzing a proteomic TNBC dataset, we found significant upregulation of sideroflexin 1 (SFXN1) in tumor tissues. However, the precise function of SFXN1 in TNBC remains unclear. Immunoblotting was performed to determine SFXN1 expression levels. Label-free quantitative proteomics and liquid chromatography-tandem mass spectrometry were used to identify the downstream targets of SFXN1. Mechanistic studies of SFXN1 and cellular inhibitor of PP2A (CIP2A) were performed using immunoblotting, immunofluorescence staining, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Functional experiments were used to investigate the role of SFXN1 in TNBC cells. SFXN1 was significantly overexpressed in TNBC tumor tissues and was associated with unfavorable outcomes in patients with TNBC. Functional experiments demonstrated that SFXN1 promoted TNBC growth and metastasis in vitro and in vivo. Mechanistic studies revealed that SFXN1 promoted TNBC progression by inhibiting the autophagy receptor TOLLIP (toll interacting protein)-mediated autophagic degradation of CIP2A. The pro-tumorigenic effect of SFXN1 overexpression was partially prevented by lapatinib-mediated inhibition of the CIP2A/PP2A/p-AKT pathway. These findings may provide a new targeted therapy for patients with TNBC.

10.
Pathol Int ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940569

RESUMEN

Exosomes from cancer cells function as carriers to spread or transport specific microRNAs (miRNAs) to distant sites to exert their effects, but the mechanism of exosomal miRNA action in esophageal squamous cell carcinoma (ESCC) has not been fully explained. Therefore, in this study, we were interested in the impact of exosomal miR-196a-5p in ESCC progression. We found that miR-196a-5p was expressed enriched in clinical tissues, ESCC cells, and exosomes. Functionally, depletion of miR-196a-5p impeded ESCC cell growth, migration, and invasion, whereas overexpression of miR-196a-5p produced the opposite results. Moreover, enhancement of exosomal miR-196a-5p in recipient ESCC cells triggered more intense proliferation and migration. Mechanistically, we identified integral membrane protein 2B (ITM2B) as a direct target of miR-196a-5p. Silencing of ITM2B partially counteracted the inhibitory effect of miR-196a-5p inhibitors on the malignant phenotype of ESCC. Furthermore, in vivo, lower miR-196a-5p levels triggered by the introduction of antagomiR-196a-5p resulted in the generation of smaller volume and weight xenograft tumors. Thus, our results demonstrated novel mechanisms of exosomal and intracellular miR-196a-5p-mediated ESCC growth and migration and identify the interaction of miR-196a-5p with ITM2B. These works might provide new targets and basis for the development of clinical treatment options for ESCC.

11.
Eur J Med Chem ; 272: 116499, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38759457

RESUMEN

The Mnk-eIF4E axis plays a crucial role in tumor development, and inhibiting Mnk kinases is a promising approach for cancer therapy. Starting with fragment WS23, a series of 4-(indolin-1-yl)-6-substituted-pyrido[3,2-d]pyrimidine derivatives were designed and synthesized. Among these derivatives, compound 15b showed the highest potency with IC50 values of 0.8 and 1.5 nM against Mnk1 and Mnk2, respectively. Additionally, it demonstrated good selectivity among 30 selected kinases. 15b significantly suppressed MOLM-13 and K562 cell lines growth and caused cell cycle arrest. Furthermore, the Western blot assay revealed that 15b effectively downregulated the downstream proteins p-eIF4E, Mcl-1, and c-myc. Additionally, 15b exhibited remarkable stability in rat plasma and rat and human microsomes. In vivo anti-tumor activity study suggested that treatment with 15b suppressed tumor growth in LL/2 syngeneic models. These findings highlight the potential of 15b as a novel and potent Mnks inhibitor, which deserves further investigation.


Asunto(s)
Antineoplásicos , Proliferación Celular , Diseño de Fármacos , Péptidos y Proteínas de Señalización Intracelular , Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Pirimidinas , Humanos , Pirimidinas/farmacología , Pirimidinas/química , Pirimidinas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Animales , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Ratas , Relación Estructura-Actividad , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Relación Dosis-Respuesta a Droga , Línea Celular Tumoral , Ratones , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Neoplasias Experimentales/metabolismo
12.
PLoS Pathog ; 20(5): e1012232, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743760

RESUMEN

Infectious bronchitis virus (IBV) is a coronavirus that infects chickens, which exhibits a broad tropism for epithelial cells, infecting the tracheal mucosal epithelium, intestinal mucosal epithelium, and renal tubular epithelial cells. Utilizing single-cell RNA sequencing (scRNA-seq), we systematically examined cells in renal, bursal, and tracheal tissues following IBV infection and identified tissue-specific molecular markers expressed in distinct cell types. We evaluated the expression of viral RNA in diverse cellular populations and subsequently ascertained that distal tubules and collecting ducts within the kidney, bursal mucosal epithelial cells, and follicle-associated epithelial cells exhibit susceptibility to IBV infection through immunofluorescence. Furthermore, our findings revealed an upregulation in the transcription of proinflammatory cytokines IL18 and IL1B in renal macrophages as well as increased expression of apoptosis-related gene STAT in distal tubules and collecting duct cells upon IBV infection leading to renal damage. Cell-to-cell communication unveiled potential interactions between diverse cell types, as well as upregulated signaling pathways and key sender-receiver cell populations after IBV infection. Integrating single-cell data from all tissues, we applied weighted gene co-expression network analysis (WGCNA) to identify gene modules that are specifically expressed in different cell populations. Based on the WGCNA results, we identified seven immune-related gene modules and determined the differential expression pattern of module genes, as well as the hub genes within these modules. Our comprehensive data provides valuable insights into the pathogenesis of IBV as well as avian antiviral immunology.


Asunto(s)
Comunicación Celular , Pollos , Infecciones por Coronavirus , Redes Reguladoras de Genes , Virus de la Bronquitis Infecciosa , Análisis de la Célula Individual , Animales , Virus de la Bronquitis Infecciosa/genética , Virus de la Bronquitis Infecciosa/fisiología , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/genética , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/inmunología , Análisis de Secuencia de ARN , Células Epiteliales/virología , Células Epiteliales/metabolismo
13.
Biol Trace Elem Res ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801624

RESUMEN

In this study, we explored how cadmium and lead co-exposure affects sleep status among residents of a polluted area and nature reserve in rural northwestern China. Cadmium and lead levels were measured using blood samples, and sleep status was evaluated using sleep questionnaires, with the main sleep indicators including sleep duration, sleep quality, bedtime, and staying up. Furthermore, cadmium-lead co-exposure levels were divided into three groups: high exposure, medium exposure, and low exposure. Subjects in the contaminated area had significantly higher exposure levels (p < 0.001) and more negative sleep indicators (p < 0.01). Significant differences were found for all four sleep indicators in the high exposure group compared to the low exposure group (p < 0.01). Moreover, the overall evaluation of sleep status with high cadmium-lead co-exposure had a negative impact. Our data suggest that cadmium-lead co-exposure has a negative effect on sleep status and may have a synergistic effect on sleep.

14.
Int J Cardiol Heart Vasc ; 52: 101414, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38694269

RESUMEN

Ferroptosis is a newly discovered form of programmed cell death triggered by intracellular iron overload, which leads to the accumulation of lipid peroxides in various cells. It has been implicated in the pathogenesis and progression of various diseases, including tumors, neurological disorders, and cardiovascular diseases. The intricate mechanism underlying ferroptosis involves an imbalance between the oxidation and antioxidant systems, disturbances in iron metabolism, membrane lipid peroxidation, and dysregulation of amino acid metabolism. We highlight the key molecular mechanisms governing iron overload and ferroptosis, and discuss potential molecular pathways linking ferroptosis with arrhythmias.

15.
Cancer Res ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748783

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Transcriptional dysregulation is a hallmark of cancer, and several transcriptional regulators have been demonstrated to contribute to cancer progression. Here, we identified upregulation of the transcriptional corepressor DRAP1 in TNBC, which was closely associated with poor recurrence-free survival in TNBC patients. DRAP1 promoted TNBC proliferation, migration, and invasion in vitro and tumor growth and metastasis in vivo. Mechanistically, the DR1/DRAP1 heterodimer complex inhibited expression of the arginine sensor CASTOR1 and thereby increased activation of mTOR, which sensitized TNBC to treatment with the mTOR inhibitor everolimus. DRAP1 and DR1 also formed a positive feedback loop. DRAP1 enhanced the stability of DR1, recruiting the deubiquitinase USP7 to inhibit its proteasomal degradation; in turn, DR1 directly promoted DRAP1 transcription. Collectively, this study uncovered a DRAP1-DR1 bidirectional regulatory pathway that promotes TNBC progression, suggesting that targeting the DRAP1/DR1 complex might be a potential therapeutic strategy to treat TNBC.

16.
Anal Methods ; 16(22): 3577-3586, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38787692

RESUMEN

Analysis of exosomes provides important information for rapid and non-invasive screening of tumors. However, sensitive and convenient detection of exosomes remains technically challenging to date. Herein, a colorimetric aptasensor based on the light-stimulated oxidase-mimicking activity of FITC was constructed for detecting ovarian cancer (OC) exosomes. The aptasensor contained an EpCAM aptamer to capture OC exosomes. Cholesterol and fluorescein (FITC) were used to modify either end of the DNA (DNA anchor). The DNA anchor could combine with exosomes through a hydrophobic reaction between cholesterol and the lipid membrane. FITC oxidized 3,3',5,5'-tetramethylbenzidine (TMB) under a 365 nm LED light source in a temporally controllable manner under mild conditions, causing the solution to change from colorless to blue, and the corresponding UV-vis absorbance increased. Based on this principle, the exosomes were qualitatively analyzed by observing the color change with the naked eye. In parallel, the exosome concentration was also detected using UV-vis spectrophotometry. The linear range was from 2 × 105 to 100 × 105 particles per mL with a limit of detection of 1.77 × 105 particles per mL. The developed aptasensor also exhibited favorable selectivity and could discriminate the exosomes from OC cells and normal cells. Besides, the receiver operating characteristic (ROC) curve demonstrates that it is possible to distinguish between patients with OC and healthy donors (HDs) using exosomes as the biomarker. Our technology may expand the applications of DNA-based detection method-enabled OC diagnostic tools.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Colorimetría , Exosomas , Exosomas/química , Exosomas/metabolismo , Humanos , Colorimetría/métodos , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Femenino , Neoplasias Ováricas , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Luz , Límite de Detección , Fluoresceína/química , Bencidinas/química , Línea Celular Tumoral
17.
Int Immunopharmacol ; 135: 112221, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38762924

RESUMEN

The development of acute lung injury (ALI), a common respiratory condition with multiple causes, is significantly influenced by the pro-inflammatory environment of signal transducer and activator of transcription 3 (STAT3) in macrophages. Our study aimed to evaluate the anti-inflammatory effects of B9 (N-(4-hydroxyphenyl)-9, 10-dioxo-9, 10-dihydroanthracene-2-sulfonamide), a novel inhibitor targeting the STAT3 SH2 domain, in macrophages and to assess its therapeutic potential for ALI using a mouse model of lipopolysaccharide (LPS)-induced ALI. We found that B9 (30 mg/kg) significantly reduced lung pathological damage and neutrophil infiltration caused by the intratracheal administration of LPS. Additionally, the high expression of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6) in alveolar lavage fluid was also inhibited by B9 treatment. The decreased expression of CD86 and increased CD206 in lung tissue demonstrated the anti-inflammatory effect of B9, which was due to its inhibition of the STAT3 signaling pathway in macrophages of ALI mice. Furthermore, B9 suppressed the activation of RAW264.7 cells induced by LPS, characterized by its ability to inhibit the activation of iNOS and STAT3 in a dose-dependent manner, as well as reduce the secretion of IL-6 and IL-1ß. The in vivo preliminary safety evaluation indicated that B9 had a favorable safety profile at the administered doses. These results suggest that B9 exerts a therapeutic effect on LPS-induced ALI, potentially by preventing the phosphorylation of STAT3 Y705 and S727 without affecting the STAT3 protein level. Taken together, these findings provide a foundation for developing B9 as a novel anti-inflammatory agent for ameliorating LPS-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda , Antiinflamatorios , Citocinas , Lipopolisacáridos , Macrófagos , Factor de Transcripción STAT3 , Animales , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/patología , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Ratones , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Células RAW 264.7 , Masculino , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Citocinas/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad
18.
Cancer Cell ; 42(6): 985-1002.e18, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38821061

RESUMEN

Tumors employ various strategies to evade immune surveillance. Central nervous system (CNS) has multiple features to restrain immune response. Whether tumors and CNS share similar programs of immunosuppression is elusive. Here, we analyze multi-omics data of tumors from HER2+ breast cancer patients receiving trastuzumab and anti-PD-L1 antibody and find that CNS-enriched N-acetyltransferase 8-like (NAT8L) and its metabolite N-acetylaspartate (NAA) are overexpressed in resistant tumors. In CNS, NAA is released during brain inflammation. NAT8L attenuates brain inflammation and impairs anti-tumor immunity by inhibiting cytotoxicity of natural killer (NK) cells and CD8+ T cells via NAA. NAA disrupts the formation of immunological synapse by promoting PCAF-induced acetylation of lamin A-K542, which inhibits the integration between lamin A and SUN2 and impairs polarization of lytic granules. We uncover that tumor cells mimic the anti-inflammatory mechanism of CNS to evade anti-tumor immunity and NAT8L is a potential target to enhance efficacy of anti-cancer agents.


Asunto(s)
Sinapsis Inmunológicas , Humanos , Sinapsis Inmunológicas/metabolismo , Animales , Ratones , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/inmunología , Femenino , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Línea Celular Tumoral , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico
19.
Nat Cancer ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609488

RESUMEN

Tumor-specific T cells are crucial in anti-tumor immunity and act as targets for cancer immunotherapies. However, these cells are numerically scarce and functionally exhausted in the tumor microenvironment (TME), leading to inefficacious immunotherapies in most patients with cancer. By contrast, emerging evidence suggested that tumor-irrelevant bystander T (TBYS) cells are abundant and preserve functional memory properties in the TME. To leverage TBYS cells in the TME to eliminate tumor cells, we engineered oncolytic virus (OV) encoding TBYS epitopes (OV-BYTE) to redirect the antigen specificity of tumor cells to pre-existing TBYS cells, leading to effective tumor inhibition in multiple preclinical models. Mechanistically, OV-BYTE induced epitope spreading of tumor antigens to elicit more diverse tumor-specific T cell responses. Remarkably, the OV-BYTE strategy targeting human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory efficiently inhibited tumor progression in a human tumor cell-derived xenograft model, providing important insights into the improvement of cancer immunotherapies in a large population with a history of SARS-CoV-2 infection or coronavirus disease 2019 (COVID-19) vaccination.

20.
Bioorg Chem ; 146: 107330, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579615

RESUMEN

The increased de novo serine biosynthesis confers many advantages for tumorigenesis and metastasis. Phosphoglycerate dehydrogenase (PHGDH), a rate-limiting enzyme in serine biogenesis, exhibits hyperactivity across multiple tumors and emerges as a promising target for cancer treatment. Through screening our in-house compound library, we identified compound Stattic as a potent PHGDH inhibitor (IC50 = 1.98 ± 0.66 µM). Subsequent exploration in structural activity relationships led to the discovery of compound B12 that demonstrated the increased enzymatic inhibitory activity (IC50 = 0.29 ± 0.02 µM). Furthermore, B12 exhibited robust inhibitory effects on the proliferation of MDA-MB-468, NCI-H1975, HT1080 and PC9 cells that overexpress PHGDH. Additionally, using a [U-13C6]-glucose tracing assay, B12 was found to reduce the production of glucose-derived serine in MDA-MB-468 cells. Finally, mass spectrometry-based peptide profiling, mutagenesis experiment and molecular docking study collectively suggested that B12 formed a covalent bond with Cys421 of PHGDH.


Asunto(s)
Inhibidores Enzimáticos , Fosfoglicerato-Deshidrogenasa , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Serina , Glucosa , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA