Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Control Release ; 370: 405-420, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663753

RESUMEN

Remodeling retinal Müller glial fate, including gliosis inhibition and pro-reprogramming, represents a crucial avenue for treating degenerative retinal diseases. Stem cell transplantation exerts effects on modulating retinal Müller glial fate. However, the optimized stem cell products and the underlying therapeutic mechanisms need to be investigated. In the present study, we found that retinal progenitor cells from human embryonic stem cell-derived retinal organoids (hERO-RPCs) transferred extracellular vesicles (EVs) into Müller cells following subretinal transplantation into RCS rats. Small EVs from hERO-RPCs (hERO-RPC-sEVs) were collected and were found to delay photoreceptor degeneration and protect retinal function in RCS rats. hERO-RPC-sEVs were taken up by Müller cells both in vivo and in vitro, and inhibited gliosis while promoting early dedifferentiation of Müller cells. We further explored the miRNA profiles of hERO-RPC-sEVs, which suggested a functional signature associated with neuroprotection and development, as well as the regulation of stem cell and glial fate. Mechanistically, hERO-RPC-sEVs might regulate the fate of Müller cells by miRNA-mediated nuclear factor I transcription factors B (NFIB) downregulation. Collectively, our findings offer novel mechanistic insights into stem cell therapy and promote the development of EV-centered therapeutic strategies.


Asunto(s)
Células Ependimogliales , Vesículas Extracelulares , MicroARNs , Organoides , Degeneración Retiniana , Vesículas Extracelulares/metabolismo , Animales , MicroARNs/genética , Humanos , Degeneración Retiniana/terapia , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Células Ependimogliales/metabolismo , Organoides/metabolismo , Ratas , Retina/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Trasplante de Células Madre/métodos , Gliosis , Diferenciación Celular , Células Madre/metabolismo , Células Madre/citología
2.
Int J Ophthalmol ; 16(4): 483-498, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077494

RESUMEN

AIM: To explore whether the subretinal transplantation of retinal progenitor cells from human embryonic stem cell-derived retinal organoid (hERO-RPCs) could promote Müller glia dedifferentiation and transdifferentiation, thus improving visual function and delaying retinal degenerative progression. METHODS: hERO-RPCs were subretinally transplanted into Royal College of Surgeons (RCS) rats. Electroretinography (ERG) recording was performed at 4 and 8wk postoperation to assess retinal function. Using immunofluorescence, the changes in outer nuclear layer (ONL) thickness and retinal Müller glia were explored at 2, 4, and 8wk postoperation. To verify the effect of hERO-RPCs on Müller glia in vitro, we cocultured hERO-RPCs with Müller glia with a Transwell system. After coculture, Ki67 staining and quantitative polymerase chain reaction (qPCR) were performed to measure the proliferation and mRNA levels of Müller glia respectively. Cell migration experiment was used to detect the effect of hERO-RPCs on Müller glial migration. Comparisons between two groups were performed by the unpaired Student's t-test, and comparisons among multiple groups were made with one-way ANOVA followed by Tukey's multiple comparison test. RESULTS: The visual function and ONL thickness of RCS rats were significantly improved by transplantation of hERO-RPCs at 4 and 8wk postoperation. In addition to inhibiting gliosis at 4 and 8wk postoperation, hERO-RPCs significantly increased the expression of dedifferentiation-associated transcriptional factor in Müller glia and promoted the migration at 2, 4 and 8wk postoperation, but not the transdifferentiation of these cells in RCS rats. In vitro, using the Transwell system, we found that hERO-RPCs promoted the proliferation and migration of primary rat Müller glia and induced their dedifferentiation at the mRNA level. CONCLUSION: These results show that hERO-RPCs might promote early dedifferentiation of Müller glia, which may provide novel insights into the mechanisms of stem cell therapy and Müller glial reprogramming, contributing to the development of novel therapies for retinal degeneration disorders.

3.
Nat Commun ; 13(1): 322, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35031600

RESUMEN

There are contrasting results concerning the effect of reactive school closure on SARS-CoV-2 transmission. To shed light on this controversy, we developed a data-driven computational model of SARS-CoV-2 transmission. We found that by reactively closing classes based on syndromic surveillance, SARS-CoV-2 infections are reduced by no more than 17.3% (95%CI: 8.0-26.8%), due to the low probability of timely identification of infections in the young population. We thus investigated an alternative triggering mechanism based on repeated screening of students using antigen tests. Depending on the contribution of schools to transmission, this strategy can greatly reduce COVID-19 burden even when school contribution to transmission and immunity in the population is low. Moving forward, the adoption of antigen-based screenings in schools could be instrumental to limit COVID-19 burden while vaccines continue to be rolled out.


Asunto(s)
COVID-19/epidemiología , COVID-19/prevención & control , Modelos Estadísticos , Cuarentena/organización & administración , SARS-CoV-2/patogenicidad , Instituciones Académicas/organización & administración , COVID-19/diagnóstico , COVID-19/transmisión , Prueba Serológica para COVID-19 , Simulación por Computador , Humanos , Italia/epidemiología , Tamizaje Masivo/tendencias , Distanciamiento Físico , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/inmunología , Instituciones Académicas/legislación & jurisprudencia , Estudiantes/legislación & jurisprudencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA