Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
NPJ Parkinsons Dis ; 10(1): 3, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167894

RESUMEN

Substantial evidence shown that the age at onset (AAO) of Parkinson's disease (PD) is a major determinant of clinical heterogeneity. However, the mechanisms underlying heterogeneity in the AAO remain unclear. To investigate the risk factors with the AAO of PD, a total of 3156 patients with PD from the UK Biobank were included in this study. We evaluated the effects of polygenic risk scores (PRS), nongenetic risk factors, and their interaction on the AAO using Mann-Whitney U tests and regression analyses. We further identified the genes interacting with nongenetic risk factors for the AAO using genome-wide environment interaction studies. We newly found physical activity (P < 0.0001) was positively associated with AAO and excessive daytime sleepiness (P < 0.0001) was negatively associated with AAO, and reproduced the positive associations of smoking and non-steroidal anti-inflammatory drug intake and the negative association of family history with AAO. In the dose-dependent analyses, smoking duration (P = 1.95 × 10-6), coffee consumption (P = 0.0150), and tea consumption (P = 0.0008) were positively associated with AAO. Individuals with higher PRS had younger AAO (P = 3.91 × 10-5). In addition, we observed a significant interaction between the PRS and smoking for AAO (P = 0.0316). Specifically, several genes, including ANGPT1 (P = 7.17 × 10-7) and PLEKHA6 (P = 4.87 × 10-6), may influence the positive relationship between smoking and AAO. Our data suggests that genetic and nongenetic risk factors are associated with the AAO of PD and that there is an interaction between the two.

2.
Redox Biol ; 69: 102993, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38104484

RESUMEN

Resistance to chemotherapy is the main reason for treatment failure and poor prognosis in patients with triple-negative breast cancer (TNBC). Although the association of RNA N6-methyladenosine (m6A) modifications with therapy resistance is noticed, its role in the development of therapeutic resistance in TNBC is not well documented. This study aimed to investigate the potential mechanisms underlying reactive oxygen species (ROS) regulation in doxorubicin (DOX)-resistant TNBC. Here, we found that DOX-resistant TNBC cells displayed low ROS levels because of increased expression of superoxide dismutase (SOD2), thus maintaining cancer stem cells (CSCs) characteristics and DOX resistance. FOXO1 is a master regulator that reduces cellular ROS in DOX-resistant TNBC cells, and knockdown of FOXO1 significantly increased ROS levels by inhibiting SOD2 expression. Moreover, the m6A demethylase ALKBH5 promoted m6A demethylation of FOXO1 mRNA and increased FOXO1 mRNA stability in DOX-resistant TNBC cells. The analysis of clinical samples revealed that the increased expression levels of ALKBH5, FOXO1, and SOD2 were significantly positively correlated with chemoresistance and poor prognosis in patients with TNBC. To our knowledge, this is the first study to highlight that ALKBH5-mediated FOXO1 mRNA demethylation contributes to CSCs characteristics and DOX resistance in TNBC cells. Furthermore, pharmacological targeting of FOXO1 profoundly restored the response of DOX-resistant TNBC cells, both in vitro and in vivo. In conclusion, we demonstrated a critical function of ALKBH5-mediated m6A demethylation of FOXO1 mRNA in restoring redox balance, which in turn promoting CSCs characteristics and DOX resistance in TNBC, and suggested that targeting the ALKBH5/FOXO1 axis has therapeutic potential for patients with TNBC refractory to chemotherapy.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Especies Reactivas de Oxígeno , Doxorrubicina/farmacología , ARN Mensajero/genética , Estabilidad del ARN , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
3.
Oncogene ; 41(37): 4318-4329, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35986102

RESUMEN

Osimertinib (AZD9291) is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), used for treating patients with advanced non-small-cell lung cancer (NSCLC) harboring EGFR-activating mutations or the resistant T790M mutation. However, acquired resistance to osimertinib is inevitable in EGFR-mutant NSCLC. By employing a global mass spectrometry-based phosphoproteomics approach, we identified that the activated p21-activated kinase 2 (PAK2)/ß-catenin axis acts as a driver of osimertinib resistance. We found that PAK2 directly phosphorylates ß-catenin and increases the nuclear localization of ß-catenin, leading to the increased expression and transcriptional activity of ß-catenin, which in turn enhances cancer stem-like properties and osimertinib resistance. Moreover, we revealed that HER3 as an upstream regulator of PAK2, drives the activation of PAK2/ß-catenin pathways in osimertinib-resistant cells. The clinical relevance of these findings was further confirmed by examining tissue specimens from patients with EGFR-mutant NSCLC. The results demonstrated that the levels of HER3, phospho-PAK2 (p-PAK2) and ß-catenin in the tissues from patients with EGFR-mutant NSCLC, that had relapsed after treatment with osimertinib, were elevated compared to those of the corresponding untreated tissues. Additionally, the high levels of HER3, p-PAK2 and ß-catenin correlated with shorter progression-free survival (PFS) in patients with EGFR-TKI-treated NSCLC. We additionally observed that the suppression of PAK2 via knockdown or pharmacological targeting with PAK inhibitors markedly restored the response of osimertinib-resistant NSCLC cells to osimertinib both in vitro and in vivo. In conclusion, these results indicated that the PAK2-mediated activation of ß-catenin is important for osimertinib resistance and targeting the HER3/PAK2/ß-catenin pathway has potential therapeutic value in NSCLCs with acquired resistance to osimertinib.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Acrilamidas , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Humanos , Indoles , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas , beta Catenina/genética , Quinasas p21 Activadas/genética
4.
Cell Death Discov ; 8(1): 170, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35387964

RESUMEN

Activating mutations of epidermal growth factor receptor (EGFR) contributes to the progression of non-small cell lung cancer (NSCLC). EGFR tyrosine kinase inhibitor (TKI)-targeted therapy has become the standard treatment for NSCLC patients with EGFR-mutations. However, acquired resistance to these agents remains a major obstacle for managing NSCLC. Here, we investigated a novel strategy to overcome EGFR TKI resistance by targeting the nicotinamide N-methyltransferase (NNMT). Using iTRAQ-based quantitative proteomics analysis, we identified that NNMT was significantly increased in EGFR-TKI-resistant NSCLC cells. Moreover, we found that NNMT expression was increased in EGFR-TKI-resistant NSCLC tissue samples, and higher levels were correlated with shorter progression-free survival in EGFR-TKI-treated NSCLC patients. Knockdown of NNMT rendered EGFR-TKI-resistant cells more sensitive to EGFR-TKI, whereas overexpression of NNMT in EGFR-TKI-sensitive cells resulted in EGFR-TKI resistance. Mechanically, upregulation of NNMT increased c-myc expression via SIRT1-mediated c-myc deacetylation, which in turn promoted glycolysis and EGFR-TKI resistance. Furthermore, we demonstrated that the combination of NNMT inhibitor and EGFR-TKI strikingly suppressed the growth of EGFR-TKI-resistant NSCLC cells both in vitro and in vivo. In conclusion, our research indicated that NNMT overexpression is important for acquired resistance to EGFR-TKI and that targeting NNMT might be a potential therapeutic strategy to overcome resistance to EGFR TKI.

5.
Zhongguo Fei Ai Za Zhi ; 24(8): 538-547, 2021 Aug 20.
Artículo en Chino | MEDLINE | ID: mdl-34334155

RESUMEN

BACKGROUND: Lung cancer is the malignant tumor with the highest incidence and mortality in China, among which non-small cell lung cancer (NSCLC) accounts for about 80%. Epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) targeted therapy has been playing an important role in treatment of NSCLC. However, unavoidable therapeutic resistance significantly limits the clinical efficacy of EGFR-TKI. As a key member of the forkhead box protein family, FOXC1 is aberrantly expressed in NSCLC and involved in NSCLC progression. The aim of this work is to investigate the effect and potential mechanism of FOXC1 on gefitinib resistance in NSCLC. METHODS: Western blot was performed to assess the expression of FOXC1 protein in HCC827/GR cells. Immunohistochemistry (IHC) assays were performed in human NSCLC tissues with gefitinib resistance. HCC827/GR cells were transfected with shRNA specifically targeting FOXC1 mRNA and stable cell lines were established. The effects of FOXC1 on cell viability and apoptosis were analyzed using a new methyl thiazolyl tetrazolium assay (MTS assay) and flow cytometry. Self-renewal ability was determined by mammosphere-formation analysis. Quantitative real-time PCR (qRT-PCR) and Western blot were employed to detect the expression of SOX2, Nanog, OCT4 and CD133. Flow cytometry analysis were further used to detect the level of CD133. IHC assays were used to detect the levels of SOX2 and CD133 in NSCLC tissues with genfitiinb resistance. Correlations of the expressions of FOXC1, CD133 and SOX2 with each other in lung adenocarcinoma samples were analyzed based on The Cancer Genome Atlas (TCGA) database. RESULTS: The expression of FOXC1 is significantly increased in HCC827/GR cells compared with HCC827 cells (P<0.05). IHC results showed FOXC1 was highly expressed in NSCLC tissues with gefitinib resisitance. Knockdown of FOXC1 significantly increased the sensitivity of HCC827/GR cells to gefitinib. The cell viability was decreased and the apoptosis was promoted (P<0.05). Moreover, FOXC1 knockdown apparently inhibited the expression of SOX2 and CD133, and decreased the mammosphere-formation capacity in HCC827/GR cells. In NSCLC tissues with gefitinib resistance, the expressions of SOX2 and CD133 were significantly higher compared with gefitinib-sensitive tissues (P<0.01). Meanwhile, the expressions of FOXC1, CD133 and SOX2 with each other were positively correlated (P<0.05). CONCLUSIONS: FOXC1 could increase gefitinib resitance in NSCLC, by which mechanism is related to the regulation of cancer stem cell properties.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Factores de Transcripción Forkhead/genética , Gefitinib , Neoplasias Pulmonares , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Factores de Transcripción Forkhead/farmacología , Factores de Transcripción Forkhead/uso terapéutico , Gefitinib/efectos adversos , Gefitinib/farmacología , Gefitinib/uso terapéutico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA