Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
iScience ; 27(6): 109979, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38832007

RESUMEN

This review explores the hallmarks of cancer resistance, including drug efflux mediated by ATP-binding cassette (ABC) transporters, metabolic reprogramming characterized by the Warburg effect, and the dynamic interplay between cancer cells and mitochondria. The role of cancer stem cells (CSCs) in treatment resistance and the regulatory influence of non-coding RNAs, such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are studied. The chapter emphasizes future directions, encompassing advancements in immunotherapy, strategies to counter adaptive resistance, integration of artificial intelligence for predictive modeling, and the identification of biomarkers for personalized treatment. The comprehensive exploration of these hallmarks provides a foundation for innovative therapeutic approaches, aiming to navigate the complex landscape of cancer resistance and enhance patient outcomes.

2.
J Nanobiotechnology ; 22(1): 240, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735931

RESUMEN

Zinc oxide nanoparticles (ZnO NPs) stand as among the most significant metal oxide nanoparticles in trigger the formation of reactive oxygen species (ROS) and induce apoptosis. Nevertheless, the utilization of ZnO NPs has been limited by the shallowness of short-wavelength light and the constrained production of ROS. To overcome these limitations, a strategy involves achieving a red shift towards the near-infrared (NIR) light spectrum, promoting the separation and restraining the recombination of electron-hole (e--h+) pairs. Herein, the hybrid plasmonic system Au@ZnO (AZ) with graphene quantum dots (GQDs) doping (AZG) nano heterostructures is rationally designed for optimal NIR-driven cancer treatment. Significantly, a multifold increase in ROS generation can be achieved through the following creative initiatives: (i) plasmonic Au nanorods expands the photocatalytic capabilities of AZG into the NIR domain, offering a foundation for NIR-induced ROS generation for clinical utilization; (ii) elaborate design of mesoporous core-shell AZ structures facilitates the redistribution of electron-hole pairs; (iii) the incorporation GQDs in mesoporous structure could efficiently restrain the recombination of the e--h+ pairs; (iv) Modification of hyaluronic acid (HA) can enhance CD44 receptor mediated targeted triple-negative breast cancer (TNBC). In addition, the introduced Au NRs present as catalysts for enhancing photothermal therapy (PTT), effectively inducing apoptosis in tumor cells. The resulting HA-modified AZG (AZGH) exhibits efficient hot electron injection and e--h+ separation, affording unparalleled convenience for ROS production and enabling NIR-induced PDT for the cancer treanment. As a result, our well-designed mesoporous core-shell AZGH hybrid as photosensitizers can exhibit excellent PDT efficacy.


Asunto(s)
Oro , Grafito , Estrés Oxidativo , Puntos Cuánticos , Especies Reactivas de Oxígeno , Neoplasias de la Mama Triple Negativas , Óxido de Zinc , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Humanos , Estrés Oxidativo/efectos de los fármacos , Femenino , Línea Celular Tumoral , Oro/química , Grafito/química , Óxido de Zinc/química , Animales , Puntos Cuánticos/química , Ratones , Nanopartículas del Metal/química , Apoptosis/efectos de los fármacos , Ácido Hialurónico/química , Electrones
3.
Small ; : e2401147, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770990

RESUMEN

Cuproptosis, a recently discovered copper-dependent cell death, presents significant potential for the development of copper-based nanoparticles to induce cuproptosis in cancer therapy. Herein, a unique ternary heterojunction, denoted as HACT, composed of core-shell Au@Cu2O nanocubes with surface-deposited Titanium Dioxide quantum dots and modified with hyaluronic acid is introduced. Compared to core-shell AC NCs, the TiO2/Au@Cu2O exhibits improved energy structure optimization, successfully separating electron-hole pairs for redox use. This optimization results in a more rapid generation of singlet oxygen and hydroxyl radicals triggering oxidative stress under ultrasound radiation. Furthermore, the HACT NCs initiate cuproptosis by Fenton-like reaction and acidic environment, leading to the sequential release of cupric and cuprous ions. This accumulation of copper induces the aggregation of lipoylated proteins and reduces iron-sulfur proteins, ultimately initiating cuproptosis. More importantly, HACT NCs show a tendency to selectively target cancer cells, thereby granting them a degree of biosecurity. This report introduces a ternary heterojunction capable of triggering both cuproptosis and oxidative stress-related combination therapy in a stimulus-responsive manner. It can energize efforts to develop effective melanoma treatment strategies using Cu-based nanoparticles through rational design.

4.
Front Public Health ; 12: 1349514, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601500

RESUMEN

Objective: To test the validity and reliability of the Oncology Nurses Health Behaviors Determinants Scale (HBDS-ON) in oncology nurses, the Chinese version was developed. Methods: The Brislin double translation-back translation approach was employed to forward translation, back translation, synthesis, cross-cultural adaptation, and pre-survey, resulting in the first Chinese version of the Oncology Nurses Health Behaviors Determinants Scale (HBDS-ON). A convenience sample technique was used to select 350 study participants in Liaoning, Shandong, and Jiangsu, China, who satisfied the inclusion and exclusion criteria, to assess the validity and reliability of the scale. Results: The Chinese version of the Oncology Nurses Health Behaviors Determinants Scale (HBDS-ON) had six subscales (perceived threat, perceived benefits, perceived barriers, self-efficacy, cues to action, and personal protective equipment availability and accessibility), including 29 items. The average scale level was 0.931, and the content validity level of the items varied from 0.857 to 1.000. Each Cronbach's α coefficient had an acceptable internal consistency reliability range of 0.806 to 0.902. X2/df = 1.667, RMSEA = 0.044, RMR = 0.018, CFI = 0.959, NFI = 0.905, TLI = 0.954, and IFI = 0.960 were the model fit outcomes in the validation factor analysis. All of the model fit markers fell within reasonable bounds. Conclusion: The Chinese version of the Oncology Nurses Health Behaviors Determinants Scale (HBDS-ON) has good reliability and validity and can be used as a tool to assess the influencing factors of chemotherapy exposure for oncology nurses in China.


Asunto(s)
Pueblo Asiatico , Humanos , Estudios Transversales , Psicometría , Reproducibilidad de los Resultados , Encuestas y Cuestionarios
5.
J Mater Chem B ; 12(17): 4063-4079, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38572575

RESUMEN

DNA methylation is the process by which specific bases on a DNA sequence acquire methyl groups under the catalytic action of DNA methyltransferases (DNMT). Abnormal changes in the function of DNMT are important markers for cancers and other diseases; therefore, the detection of DNMT and the selection of its inhibitors are critical to biomedical research and clinical practice. DNA molecules can undergo intermolecular assembly to produce functional aggregates because of their inherently stable physical and chemical properties and unique structures. Conventional DNMT detection methods are cumbersome and complicated processes; therefore, it is necessary to develop biosensing technology based on the assembly of DNA nanostructures to achieve rapid analysis, simple operation, and high sensitivity. The design of the relevant program has been employed in life science, anticancer drug screening, and clinical diagnostics. In this review, we explore how DNA assembly, including 2D techniques like hybridization chain reaction (HCR), rolling circle amplification (RCA), catalytic hairpin assembly (CHA), and exponential isothermal amplified strand displacement reaction (EXPAR), as well as 3D structures such as DNA tetrahedra, G-quadruplexes, DNA hydrogels, and DNA origami, enhances DNMT detection. We highlight the benefits of these DNA nanostructure-based biosensing technologies for clinical use and critically examine the challenges of standardizing these methods. We aim to provide reference values for the application of these techniques in DNMT analysis and early cancer diagnosis and treatment, and to alert researchers to challenges in clinical application.


Asunto(s)
Técnicas Biosensibles , ADN , Nanoestructuras , Nanotecnología , Técnicas Biosensibles/métodos , Humanos , ADN/química , ADN/metabolismo , Nanoestructuras/química , Metilación de ADN , Metilasas de Modificación del ADN/metabolismo , Metilasas de Modificación del ADN/análisis
6.
Biosens Bioelectron ; 256: 116278, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608497

RESUMEN

The DNA-based logic circuit, constructed to mimic biochemical reaction networks, is highly significant in detecting biomarkers at the molecular level. The differences in the expression levels of microRNAs (miRNAs) within different types of cells provide hope for distinguishing cell subtypes. However, reliance on a single miRNA often leads to unreliable results. Herein, we constructed an enzyme-triggered cascade logic circuit based on the AND gate, which is capable of generating corresponding fluorescence signals in the presence of target miRNAs. The introduction of apurinic/apyrimidinic (AP) sites effectively reduces the likelihood of false signal generation. Amplification of the fluorescence signal relies on the catalytic hairpin assembly and the repetitive reuse of the multicomponent nucleic acid enzyme (MNAzyme). We demonstrated that the logic circuit can not only distinguish cancer cells from normal cells but also identify different types of cancer cells. The programmability of the logic circuits and the simplicity of the assay system allow us to modify the functional sequences to recognize different types of biomarkers, thus providing a reference for the identification of various cell subtypes.


Asunto(s)
Técnicas Biosensibles , ADN , MicroARNs , Humanos , Técnicas Biosensibles/métodos , MicroARNs/genética , ADN/genética , ADN/química , Neoplasias/genética , Computadores Moleculares , Línea Celular Tumoral , Biomarcadores de Tumor/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética
7.
Environ Sci Technol ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316131

RESUMEN

China's online food delivery (OFD) services consume enormous amounts of disposable plastics. Here, we investigated and modeled the national mass inventories and environmental release of plastics and chemical additives in the plastic. The extra-tree regression identified six key descriptors in determining OFD sales in Chinese cities. Approximately 847 kt of OFD plastic waste was generated in 2021 (per capita 1.10 kg/yr in the megacities and 0.39 kg/yr in other cities). Various additives were extensively detected, with geomean concentrations of 140.96, 4.76, and 0.25 µg/g for ∑8antioxidants, ∑21phthalates, and bisphenol A (BPA), respectively. The estimated mass inventory of these additives in the OFD plastics was 164.7 t, of which 51.1 t was released into the atmosphere via incineration plants and 51.0 t was landfilled. The incineration also released 8.07 t of polycyclic aromatic hydrocarbons and 39.1 kt of particulate matter into the atmosphere. Takeout food may increase the dietary intake of phthalates and BPA by 30% to 50% and raise concerns about considerable exposure to antioxidant transformation products. This study provides profound environmental implications for plastic waste in the Chinese OFD industry. We call for a sustainable circular economy action plan for waste disposal, but mitigating the hazardous substance content and their emissions is urgent.

8.
J Pharm Anal ; 14(1): 128-139, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38352953

RESUMEN

Pharmacological perturbation studies based on protein-level signatures are fundamental for drug discovery. In the present study, we used a mass spectrometry (MS)-based proteomic platform to profile the whole proteome of the breast cancer MCF7 cell line under stress induced by 78 bioactive compounds. The integrated analysis of perturbed signal abundance revealed the connectivity between phenotypic behaviors and molecular features in cancer cells. Our data showed functional relevance in exploring the novel pharmacological activity of phenolic xanthohumol, as well as the noncanonical targets of clinically approved tamoxifen, lovastatin, and their derivatives. Furthermore, the rational design of synergistic inhibition using a combination of histone methyltransferase and topoisomerase was identified based on their complementary drug fingerprints. This study provides rich resources for the proteomic landscape of drug responses for precision therapeutic medicine.

9.
Clin Proteomics ; 21(1): 2, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182978

RESUMEN

Despite recent innovations in imaging and genomic screening promotes advance in diagnosis and treatment of lung adenocarcinoma (LUAD), there remains high mortality of LUAD and insufficient understanding of LUAD biology. Our previous study performed an integrative multi-omic analysis of LUAD, filling the gap between genomic alterations and their biological proteome effects. However, more detailed molecular characterization and biomarker resources at proteome level still need to be uncovered. In this study, a quantitative proteomic experiment of patient-derived benign lung disease samples was carried out. After that, we integrated the proteomic data with previous dataset of 103 paired LUAD samples. We depicted the proteomic differences between non-cancerous and tumor samples and among diverse pathological subtypes. We also found that up-regulated mitophagy was a significant characteristic of early-stage LUAD. Additionally, our integrative analysis filtered out 75 potential prognostic biomarkers and validated two of them in an independent LUAD serum cohort. This study provided insights for improved understanding proteome abnormalities of LUAD and the novel prognostic biomarker discovery offered an opportunity for LUAD precise management.

10.
J Transl Med ; 22(1): 15, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172946

RESUMEN

Breast cancer (BC) is a multifaceted disease characterized by distinct molecular subtypes and varying responses to treatment. In BC, the phosphatidylinositol 3-kinase (PI3K) pathway has emerged as a crucial contributor to the development, advancement, and resistance to treatment. This review article explores the implications of the PI3K pathway in predictive, preventive, and personalized medicine for BC. It emphasizes the identification of predictive biomarkers, such as PIK3CA mutations, and the utility of molecular profiling in guiding treatment decisions. The review also discusses the potential of targeting the PI3K pathway for preventive strategies and the customization of therapy based on tumor stage, molecular subtypes, and genetic alterations. Overcoming resistance to PI3K inhibitors and exploring combination therapies are addressed as important considerations. While this field holds promise in improving patient outcomes, further research and clinical trials are needed to validate these approaches and translate them into clinical practice.


Asunto(s)
Neoplasias de la Mama , Fosfatidilinositol 3-Quinasa , Humanos , Femenino , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Mama/patología , Medicina de Precisión , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Mutación/genética , Fosfatidilinositol 3-Quinasa Clase I , Proteínas Proto-Oncogénicas c-akt/metabolismo
11.
Biochem Genet ; 62(2): 1055-1069, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37526864

RESUMEN

Oral submucous fibrosis (OSF) is a chronic disorder with a high malignant transformation rate. Epithelial-mesenchymal transition (EMT) and angiogenesis are key events in OSF. The Notch signaling plays an essential role in the pathogenesis of various fibrotic diseases, including OSF. Our study aimed to explore the effects of Notch on the EMT and angiogenesis processes during the development of OSF. The expression of Notch in OSF tissues versus normal buccal mucosa samples was compared. Arecoline was used to induce myofibroblast transdifferentiation of buccal mucosal fibroblasts (BMFs). Short hairpin RNA technique was used to knockdown Notch in BMFs. Pirfenidone and SRI-011381 were used to inhibit and activate the TGF-ß1 signaling pathway in BMFs, respectively. The expression of Notch was markedly upregulated in OSF tissues and fibrotic BMFs. Knockdown of Notch significantly decreased the viability and promoted apoptosis in BMFs subjected to arecoline stimulation. Downregulation of Notch also significantly suppressed the EMT process, as shown by the reduction of N-cadherin and vimentin with concomitant upregulation of E-cadherin. In addition, knockdown of Notch upregulated VEGF and enhanced the angiogenic activity of fBMFs. Moreover, inhibition of TGF-ß1 suppressed viability and EMT, promoted apoptosis, and induced angiogenesis of fBMFs, while activation of TGF-ß1 significantly diminished the effects of Notch knockdown on fBMFs. Knockdown of Notch suppressed EMT and induced angiogenesis in OSF by regulating TGF-ß1, suggesting that the Notch-TGF-ß1 pathway may serve as a therapeutic intervention target for OSF.

12.
World J Stem Cells ; 15(9): 876-896, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37900937

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) have been used in liver transplantation and have certain effects in alleviating liver ischemia-reperfusion injury (IRI) and regulating immune rejection. However, some studies have indicated that the effects of MSCs are not very significant. Therefore, approaches that enable MSCs to exert significant and stable therapeutic effects are worth further study. AIM: To enhance the therapeutic potential of human menstrual blood-derived stromal cells (MenSCs) in the mouse liver ischemia-reperfusion (I/R) model via interferon-γ (IFN-γ) priming. METHODS: Apoptosis was analyzed by flow cytometry to evaluate the safety of IFN-γ priming, and indoleamine 2,3-dioxygenase (IDO) levels were measured by quantitative real-time reverse transcription polymerase chain reaction, western blotting, and ELISA to evaluate the efficacy of IFN-γ priming. In vivo, the liver I/R model was established in male C57/BL mice, hematoxylin and eosin and TUNEL staining was performed and serum liver enzyme levels were measured to assess the degree of liver injury, and regulatory T cell (Treg) numbers in spleens were determined by flow cytometry to assess immune tolerance potential. Metabolomics analysis was conducted to elucidate the potential mechanism underlying the regulatory effects of primed MenSCs. In vitro, we established a hypoxia/reoxygenation (H/R) model and analyzed apoptosis by flow cytometry to investigate the mechanism through which primed MenSCs inhibit apoptosis. Transmission electron microscopy, western blotting, and immunofluorescence were used to analyze autophagy levels. RESULTS: IFN-γ-primed MenSCs secreted higher levels of IDO, attenuated liver injury, and increased Treg numbers in the mouse spleens to greater degrees than untreated MenSCs. Metabolomics and autophagy analyses proved that primed MenSCs more strongly induced autophagy in the mouse livers. In the H/R model, autophagy inhibitors increased the level of H/R-induced apoptosis, indicating that autophagy exerted protective effects. In addition, primed MenSCs decreased the level of H/R-induced apoptosis via IDO and autophagy. Further rescue experiments proved that IDO enhanced the protective autophagy by inhibiting the mammalian target of rapamycin (mTOR) pathway and activating the AMPK pathway. CONCLUSION: IFN-γ-primed MenSCs exerted better therapeutic effects in the liver I/R model by secreting higher IDO levels. MenSCs and IDO activated the AMPK-mTOR-autophagy axis to reduce IRI, and IDO increased Treg numbers in the spleen and enhanced the MenSC-mediated induction of immune tolerance. Our study suggests that IFN-γ-primed MenSCs may be a novel and superior MSC product for liver transplantation in the future.

13.
Oral Dis ; 2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37743610

RESUMEN

BACKGROUND: Oral submucous fibrosis (OSF) is associated with malignant disorders. DNA methyltransferase 3A (DNMT3A) is a DNA methylesterase reported to be upregulated in multiple organs and shown to inhibit fibrosis. However, the detailed effect of DNMT3A on OSF remains unclear. METHODS: To mimic OSF in vitro, oral fibroblasts were exposed to arecoline and molecular biological experiments were performed to detect the function of DNMT3A in OSF. RESULTS: We found that von Hippel-Lindau (VHL) was downregulated and highly methylated in OSF. Arecoline remarkably increased the viability, invasiveness, and migration of oral fibroblasts, but upregulation of VHL partially reversed these effects. DNMT3A induces DNA hypermethylation in the VHL promoter, and VHL markedly inhibits the level of tenascin-C (TNC) by inducing the ubiquitination of TNC. TNC reversed the inhibitory effect of VHL upregulation on the differentiation of oral fibroblasts into myofibroblasts. CONCLUSION: DNMT3A induces OSF by promoting methylation of the VHL promoter. Hence, our study provides novel insights into the discovery of novel strategies that can be employed against OSF.

14.
Small ; 19(49): e2303530, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37635125

RESUMEN

Alzheimer's disease (AD) is a severe neurodegenerative condition characterized by inflammation, beta-amyloid (Aß) plaques, and neurodegeneration, which currently lack effective treatments. Chiral nanomaterials have emerged as a promising option for treating neurodegenerative disorders due to their high biocompatibility, strong sustained release ability, and specific enantiomer selectivity. The development of a stimulus-responsive chiral nanomaterial, UiO-66-NH2 @l-MoS2 QDs@PA-Ni (MSP-U), for the treatment of AD is reported. MSP-U is found to stimulate neural stem cell (NSCs) differentiation, promote in situ hydrogen (H2 ) production, and clear Aß plaques. l-MoS2 QDs modified with l-Cysteine (l-Cys) effectively enhance the differentiation of NSCs into neurons through circularly polarized near-infrared radiation. Doped-phytic acid nickel (PA-Ni) improves the activity of l-MoS2 QDs in scavenging reactive oxygen species at the lesion site via photocatalytic H2 production. Loading l-MoS2 QDs with UiO-66 type metal oxide suppresses electron-hole recombination effect, thereby achieving rapid charge separation and improving transport of photogenerated electrons, leading to significantly improved H2 production efficiency. The photothermal effect of MSP-U also clears the generated Aß plaques. In vivo evaluations show that MSP-U improves spatial cognition and memory, suggesting a promising potential candidate for the treatment of AD using chiral nanomaterials.


Asunto(s)
Enfermedad de Alzheimer , Ácidos Ftálicos , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Molibdeno/farmacología , Péptidos beta-Amiloides/metabolismo , Cognición
15.
Front Nutr ; 10: 1243390, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37614742

RESUMEN

Dietary fibers (DFs) and their metabolites attract significant attention in research on health and disease, attributing to their effects on regulating metabolism, proliferation, inflammation, and immunity. When fermented by gut microbiota, DFs mainly produce short-chain fatty acids (SCFAs), such as acetic acid, propionic acid, and butyric acid. As the essential nutrients for intestinal epithelial cells, SCFAs maintain intestinal homeostasis and play essential roles in a wide range of biological functions. SCFAs have been found to inhibit histone deacetylase, activate G protein-coupled receptors, and modulate the immune response, which impacts cancer and anti-cancer treatment. Notably, while extensive studies have illuminated the roles of SCFAs in colorectal cancer development, progression, and treatment outcomes, limited evidence is available for other types of cancers. This restricts our understanding of the complex mechanisms and clinical applications of SCFAs in tumors outside the intestinal tract. In this study, we provide a comprehensive summary of the latest evidence on the roles and mechanisms of SCFAs, with a focus on butyric acid and propionic acid, derived from microbial fermentation of DFs in cancer. Additionally, we recapitulate the clinical applications of SCFAs in cancer treatments and offer our perspectives on the challenges, limitations, and prospects of utilizing SCFAs in cancer research and therapy.

16.
Phytomedicine ; 119: 154988, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37523837

RESUMEN

BACKGROUND: Diabetic kidney disease (DKD) is one of the major chronic microvascular complications of diabetes and the main cause of end-stage renal failure. Zhenwu Decoction (ZWD), an ancient classic herbal formula in Chinese medicine, has been clinically used for the treatment of kidney disease in China for many years. However, there is currently limited research investigating the application of ZWD in the treatment of DKD and the underlying chemical and biochemical mechanisms involved. Therefore, in the present study, we aimed to identify active components in ZWD and unravel the possible mechanism(s) of action for ZWD in treating DKD. METHODS: The protective effect of ZWD against DKD was evaluated utilizing an in vitro model of diabetic renal proximal tubulopathy. The major chemical components from ZWD were identified by LC-MS/MS. Drug targets were predicted by submitting the SMILES (Simplified Molecular Input Line Entry System) of the compounds to SEA (Similarity Ensemble Approach) search server and SwissTargetPrediction. The differentially expressed genes (DEGs) of the disease were collected and integrated from GeneCards. The constructions of "Compounds-potential targets interaction" (CTI) network and Protein-Protein Interaction (PPI) network, as well as topology analysis were conducted by Cytoscape. Gene Ontology (GO) enrichment and Metacore pathway enrichment analysis were also performed. Lastly, molecular docking and experimental studies were adopted to validate the core target and identify an active component(s) of ZWD. RESULTS: We demonstrated that the ZWD extract could significantly rescue the palmitic acid (PA) and high glucose-induced apoptotic cell death in HK-2 cells, and the cytoprotection was accompanied by decreases in the extent of reactive oxygen species (ROS) production, mitochondrial membrane depolarization and ATP depletion. Fifty-seven compounds in the aqueous extract of ZWD were identified by LC-MS. The results of PPI analysis showed that top hub genes involved epidermal growth factor receptor (EGFR), Signal Transducer and Activator of Transcription 3 (STAT3), Serine/Threonine Kinase 1 (AKT1), Vascular Endothelial Growth Factor A (VEGFA) and Fibroblast Growth Factor 2 (FGF2). Pathway enrichment analysis revealed the involvement of S1P1 receptor signaling and EGFR pathways. The results of molecular docking analysis showed that albiflorin has a high binding affinity to EGFR. Albiflorin could also exert protective effects in an HK-2 cell model of DKD, which may be related to the inhibition of the high glucose/high lipid-induced EGFR and Akt phosphorylation. CONCLUSION: ZWD has been shown to be effective in ameliorating cell death in an experimental model of DKD. The beneficial effect of ZWD against DKD was associated with the interactions between the active ingredients and the hub genes, such as EGFR, STAT3, AKT1, and VEGF-A. Albiflorin may be one of the active components responsible for the nephroprotective effect in ZWD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Humanos , Nefropatías Diabéticas/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular , Cromatografía Liquida , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Medicamentos Herbarios Chinos/farmacología , Receptores ErbB
17.
Cell Mol Neurobiol ; 43(7): 3575-3592, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37418138

RESUMEN

It has been demonstrated that diabetes cause neurite degeneration in the brain and cognitive impairment and neurovascular interactions are crucial for maintaining brain function. However, the role of vascular endothelial cells in neurite outgrowth and synaptic formation in diabetic brain is still unclear. Therefore, present study investigated effects of brain microvascular endothelial cells (BMECs) on high glucose (HG)-induced neuritic dystrophy using a coculture model of BMECs with neurons. Multiple immunofluorescence labelling and western blot analysis were used to detect neurite outgrowth and synapsis formation, and living cell imaging was used to detect uptake function of neuronal glucose transporters. We found cocultured with BMECs significantly reduced HG-induced inhibition of neurites outgrowth (including length and branch formation) and delayed presynaptic and postsynaptic development, as well as reduction of neuronal glucose uptake capacity, which was prevented by pre-treatment with SU1498, a vascular endothelial growth factor (VEGF) receptor antagonist. To analyse the possible mechanism, we collected BMECs cultured condition medium (B-CM) to treat the neurons under HG culture condition. The results showed that B-CM showed the same effects as BMEC on HG-treated neurons. Furthermore, we observed VEGF administration could ameliorate HG-induced neuronal morphology aberrations. Putting together, present results suggest that cerebral microvascular endothelial cells protect against hyperglycaemia-induced neuritic dystrophy and restorate neuronal glucose uptake capacity by activation of VEGF receptors and endothelial VEGF release. This result help us to understand important roles of neurovascular coupling in pathogenesis of diabetic brain, providing a new strategy to study therapy or prevention for diabetic dementia. Hyperglycaemia induced inhibition of neuronal glucose uptake and impaired to neuritic outgrowth and synaptogenesis. Cocultured with BMECs/B-CM and VEGF treatment protected HG-induced inhibition of glucose uptake and neuritic outgrowth and synaptogenesis, which was antagonized by blockade of VEGF receptors. Reduction of glucose uptake may further deteriorate impairment of neurites outgrowth and synaptogenesis.


Asunto(s)
Células Endoteliales , Hiperglucemia , Humanos , Células Endoteliales/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Cultivadas , Neuronas/metabolismo , Factores de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular/farmacología , Encéfalo/metabolismo , Glucosa/toxicidad , Glucosa/metabolismo
18.
Stem Cell Rev Rep ; 19(7): 2192-2224, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37498509

RESUMEN

Liver diseases impose a huge burden worldwide. Although hepatocyte transplantation has long been considered as a potential strategy for treating liver diseases, its clinical implementation has created some obvious limitations. As an alternative strategy, cell therapy, particularly mesenchymal stem cell (MSC) transplantation, is widely used in treating different liver diseases, including acute liver disease, acute-on-chronic liver failure, hepatitis B/C virus, autoimmune hepatitis, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, alcoholic liver disease, liver fibrosis, liver cirrhosis, and hepatocellular carcinoma. Here, we summarize the status of MSC transplantation in treating liver diseases, focusing on the therapeutic mechanisms, including differentiation into hepatocyte-like cells, immunomodulating function with a variety of immune cells, paracrine effects via the secretion of various cytokines and extracellular vesicles, and facilitation of homing and engraftment. Some improved perspectives and current challenges are also addressed. In summary, MSCs have great potential in the treatment of liver diseases based on their multi-faceted characteristics, and more accurate mechanisms and novel therapeutic strategies stemming from MSCs will facilitate clinical practice.

19.
Front Oncol ; 13: 1204030, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37388232

RESUMEN

Epstein-Barr virus (human herpesvirus 4, EBV) is a linear double-stranded DNA virus that infects over 90% of the population worldwide. However, our understanding of EBV's contribution to tumorigenesis of EBV-associated GC (EBVaGC) remains incomplete. Recent advancements in EBVaGC research have highlighted that EBV-encoded microRNAs (miRNAs) play prominent roles in critical cellular processes such as migration, cell cycle, apoptosis, cell proliferation, immune response, and autophagy. Notably, the largest group of EBV-encoded miRNAs, known as BamHI-A rightward transcripts (BARTs), exhibit bidirectional effects in EBVaGC. For instance, they present both anti-apoptotic and pro-apoptotic functions and enhance chemosensitivity while also conferring resistance to 5-fluorouracil. Despite these findings, the comprehensive mechanisms through which miRNAs contribute to EBVaGC are yet to be fully elucidated. In this work, we summarize the current evidence of the roles of miRNA in EBVaGC, particularly with the application of multi-omic techniques. Additionally, we discuss the application of miRNA in EBVaGC in retrospective analyses and provide novel perspectives on the use of miRNA in EBVaGC in translational medicine.

20.
Nanomedicine (Lond) ; 18(3): 217-231, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-37125627

RESUMEN

Background: Photodynamic therapy increases collagen and decreases solar fibrosis in photoaged skin; however, the efficacy of photodynamic therapy is limited in tissues with a hypoxic microenvironment. Methods: A novel autogenous oxygen-targeted nanoparticle, named MCZT, was synthesized based on the zeolitic imidazole framework material ZIF-8, methyl aminolevulinate, catalase and an anti-TRPV1 monoclonal antibody, and its effects on skin photoaging were investigated. Results: MCZT was successfully synthesized and showed uniform particle size, good dispersion, and excellent biocompatibility and safety. Moreover, MCZT effectively alleviated UV-induced inflammation, cellular senescence and apoptosis in HFF-1 cells. In in vivo models, MCZT ameliorated UV-evoked erythema and wrinkling, inflammation and oxidative stress, as well as the loss of collagen fibers and water, in the skin of mice. Conclusion: These findings suggest that MCZT holds promising potential for the treatment of skin photoaging.


Asunto(s)
Nanoestructuras , Fotoquimioterapia , Envejecimiento de la Piel , Ratones , Animales , Rayos Ultravioleta , Piel , Colágeno , Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA