Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Intervalo de año de publicación
1.
Insects ; 15(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38667419

RESUMEN

The polyphagous fall armyworm (FAW), Spodoptera frugiperda, has become an invasive pest worldwide in recent years. To develop maize germplasm with multiple pest resistance and understand genetic inheritance, 12 experimental hybrids (six pairs of reciprocal crosses) with diverse genetic backgrounds and four commercial checks were examined for FAW resistance in 2013 and 2014. The experiment utilized a randomized complete block design with four replications as the block factor. FAW injury on maize plants was assessed at 7 and 14 d after the artificial infestation at the V6 stage, and predatory arthropod taxa and abundance on maize seedlings were recorded 7 d after the infestation. Spodoptera frugiperda resistance varied significantly among the 16 hybrids. Two reciprocal crosses ('FAW1430' × 'Oh43' and 'CML333' × 'NC358') showed the least FAW injury. Eleven arthropod predators [i.e., six coleopterans, three hemipterans, earwigs (dermapterans), and spiders (or arachnids)] were also recorded; the two most common predators were the pink spotted ladybeetle, Coleomegilla maculata, and the insidious flower (or minute pirate) bug, Orius spp. Predator abundance was not correlated to FAW injury but varied greatly between 2013 and 2014. Principal component analysis demonstrated that, when compared with FAW resistant (or Bt-transgenic) checks ('DKC69-71', 'DKC67-88', and 'P31P42'), five pairs of the reciprocal crosses had moderate FAW resistance, whereas a pair of reciprocal crosses ('NC350' × 'NC358' and NC358 × NC350) showed the same FAW susceptibility as the non-Bt susceptible check 'DKC69-72'. Both parents contributed similarly to FAW resistance, or no maternal/cytoplasmic effect was detected in the experimental hybrids.

2.
Plants (Basel) ; 12(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36903970

RESUMEN

In maize (Zea mays), fungal-elicited immune responses include the accumulation of terpene synthase (TPS) and cytochrome P450 monooxygenases (CYP) enzymes resulting in complex antibiotic arrays of sesquiterpenoids and diterpenoids, including α/ß-selinene derivatives, zealexins, kauralexins and dolabralexins. To uncover additional antibiotic families, we conducted metabolic profiling of elicited stem tissues in mapping populations, which included B73 × M162W recombinant inbred lines and the Goodman diversity panel. Five candidate sesquiterpenoids associated with a chromosome 1 locus spanning the location of ZmTPS27 and ZmTPS8. Heterologous enzyme co-expression studies of ZmTPS27 in Nicotiana benthamiana resulted in geraniol production while ZmTPS8 yielded α-copaene, δ-cadinene and sesquiterpene alcohols consistent with epi-cubebol, cubebol, copan-3-ol and copaborneol matching the association mapping efforts. ZmTPS8 is an established multiproduct α-copaene synthase; however, ZmTPS8-derived sesquiterpene alcohols are rarely encountered in maize tissues. A genome wide association study further linked an unknown sesquiterpene acid to ZmTPS8 and combined ZmTPS8-ZmCYP71Z19 heterologous enzyme co-expression studies yielded the same product. To consider defensive roles for ZmTPS8, in vitro bioassays with cubebol demonstrated significant antifungal activity against both Fusarium graminearum and Aspergillus parasiticus. As a genetically variable biochemical trait, ZmTPS8 contributes to the cocktail of terpenoid antibiotics present following complex interactions between wounding and fungal elicitation.

3.
New Phytol ; 238(6): 2460-2475, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36994603

RESUMEN

Little is known about long-distance mesophyll-driven signals that regulate stomatal conductance. Soluble and/or vapor-phase molecules have been proposed. In this study, the involvement of the gaseous signal ethylene in the modulation of stomatal conductance in Arabidopsis thaliana by CO2 /abscisic acid (ABA) was examined. We present a diffusion model which indicates that gaseous signaling molecule/s with a shorter/direct diffusion pathway to guard cells are more probable for rapid mesophyll-dependent stomatal conductance changes. We, therefore, analyzed different Arabidopsis ethylene-signaling and biosynthesis mutants for their ethylene production and kinetics of stomatal responses to ABA/[CO2 ]-shifts. According to our research, higher [CO2 ] causes Arabidopsis rosettes to produce more ethylene. An ACC-synthase octuple mutant with reduced ethylene biosynthesis exhibits dysfunctional CO2 -induced stomatal movements. Ethylene-insensitive receptor (gain-of-function), etr1-1 and etr2-1, and signaling, ein2-5 and ein2-1, mutants showed intact stomatal responses to [CO2 ]-shifts, whereas loss-of-function ethylene receptor mutants, including etr2-3;ein4-4;ers2-3, etr1-6;etr2-3 and etr1-6, showed markedly accelerated stomatal responses to [CO2 ]-shifts. Further investigation revealed a significantly impaired stomatal closure to ABA in the ACC-synthase octuple mutant and accelerated stomatal responses in the etr1-6;etr2-3, and etr1-6, but not in the etr2-3;ein4-4;ers2-3 mutants. These findings suggest essential functions of ethylene biosynthesis and signaling components in tuning/accelerating stomatal conductance responses to CO2 and ABA.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/farmacología , Dióxido de Carbono/metabolismo , Etilenos/metabolismo , Estomas de Plantas/fisiología
5.
Planta ; 255(2): 37, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35020066

RESUMEN

MAIN CONCLUSION: A WRKY transcription factor identified through forward genetics is associated with sorghum resistance to the sugarcane aphid and through heterologous expression reduces aphid populations in multiple plant species. Crop plant resistance to insect pests is based on genetically encoded traits which often display variability across diverse germplasm. In a comparatively recent event, a predominant sugarcane aphid (SCA: Melanaphis sacchari) biotype has become a significant agronomic pest of grain sorghum (Sorghum bicolor). To uncover candidate genes underlying SCA resistance, we used a forward genetics approach combining the genetic diversity present in the Sorghum Association Panel (SAP) and the Bioenergy Association Panel (BAP) for a genome-wide association study, employing an established SCA damage rating. One major association was found on Chromosome 9 within the WRKY transcription factor 86 (SbWRKY86). Transcripts encoding SbWRKY86 were previously identified as upregulated in SCA-resistant germplasm and the syntenic ortholog in maize accumulates following Rhopalosiphum maidis infestation. Analyses of SbWRKY86 transcripts displayed patterns of increased SCA-elicited accumulation in additional SCA-resistant sorghum lines. Heterologous expression of SbWRKY86 in both tobacco (Nicotiana benthamiana) and Arabidopsis resulted in reduced population growth of green peach aphid (Myzus persicae). Comparative RNA-Seq analyses of Arabidopsis lines expressing 35S:SbWRKY86-YFP identified changes in expression for a small network of genes associated with carbon-nitrogen metabolism and callose deposition, both contributing factors to defense against aphids. As a test of altered plant responses, 35S:SbWRKY86-YFP Arabidopsis lines were activated using the flagellin epitope elicitor, flg22, and displayed significant increases in callose deposition. Our findings indicate that both heterologous and increased native expression of the transcription factor SbWRKY86 contributes to reduced aphid levels in diverse plant models.


Asunto(s)
Áfidos , Sorghum , Animales , Estudio de Asociación del Genoma Completo , Sorghum/genética , Factores de Transcripción/genética
6.
Plant J ; 108(5): 1295-1316, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34564909

RESUMEN

Crop damage by herbivorous insects remains a significant contributor to annual yield reductions. Following attack, maize (Zea mays) responds to herbivore-associated molecular patterns (HAMPs) and damage-associated molecular patterns (DAMPs), activating dynamic direct and indirect antiherbivore defense responses. To define underlying signaling processes, comparative analyses between plant elicitor peptide (Pep) DAMPs and fatty acid-amino acid conjugate (FAC) HAMPs were conducted. RNA sequencing analysis of early transcriptional changes following Pep and FAC treatments revealed quantitative differences in the strength of response yet a high degree of qualitative similarity, providing evidence for shared signaling pathways. In further comparisons of FAC and Pep responses across diverse maize inbred lines, we identified Mo17 as part of a small subset of lines displaying selective FAC insensitivity. Genetic mapping for FAC sensitivity using the intermated B73 × Mo17 population identified a single locus on chromosome 4 associated with FAC sensitivity. Pursuit of multiple fine-mapping approaches further narrowed the locus to 19 candidate genes. The top candidate gene identified, termed FAC SENSITIVITY ASSOCIATED (ZmFACS), encodes a leucine-rich repeat receptor-like kinase (LRR-RLK) that belongs to the same family as a rice (Oryza sativa) receptor gene previously associated with the activation of induced responses to diverse Lepidoptera. Consistent with reduced sensitivity, ZmFACS expression was significantly lower in Mo17 as compared to B73. Transient heterologous expression of ZmFACS in Nicotiana benthamiana resulted in a significantly increased FAC-elicited response. Together, our results provide useful resources for studying early elicitor-induced antiherbivore responses in maize and approaches to discover gene candidates underlying HAMP sensitivity in grain crops.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lepidópteros/fisiología , Péptidos/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Zea mays/genética , Animales , Mapeo Cromosómico , Sitios Genéticos/genética , Herbivoria , Péptidos/genética , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Nicotiana/genética , Nicotiana/fisiología , Zea mays/fisiología
7.
Proc Natl Acad Sci U S A ; 117(49): 31510-31518, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229576

RESUMEN

Herbivory is fundamental to the regulation of both global food webs and the extent of agricultural crop losses. Induced plant responses to herbivores promote resistance and often involve the perception of specific herbivore-associated molecular patterns (HAMPs); however, precisely defined receptors and elicitors associated with herbivore recognition remain elusive. Here, we show that a receptor confers signaling and defense outputs in response to a defined HAMP common in caterpillar oral secretions (OS). Staple food crops, including cowpea (Vigna unguiculata) and common bean (Phaseolus vulgaris), specifically respond to OS via recognition of proteolytic fragments of chloroplastic ATP synthase, termed inceptins. Using forward-genetic mapping of inceptin-induced plant responses, we identified a corresponding leucine-rich repeat receptor, termed INR, specific to select legume species and sufficient to confer inceptin-induced responses and enhanced defense against armyworms (Spodoptera exigua) in tobacco. Our results support the role of plant immune receptors in the perception of chewing herbivores and defense.


Asunto(s)
Herbivoria/fisiología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Inmunidad de la Planta , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Plantas Modificadas Genéticamente , Spodoptera/fisiología , Nicotiana/inmunología , Vigna/inmunología
8.
Plant J ; 104(6): 1582-1602, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33058410

RESUMEN

Plant elicitor peptides (Peps) are conserved regulators of defense responses and models for the study of damage-associated molecular pattern-induced immunity. Although present as multigene families in most species, the functional relevance of these multigene families remains largely undefined. While Arabidopsis Peps appear largely redundant in function, previous work examining Pep-induced responses in maize (Zm) implied specificity of function. To better define the function of individual ZmPeps and their cognate receptors (ZmPEPRs), activities were examined by assessing changes in defense-associated phytohormones, specialized metabolites and global gene expression patterns, in combination with heterologous expression assays and analyses of CRISPR/Cas9-generated knockout plants. Beyond simply delineating individual ZmPep and ZmPEPR activities, these experiments led to a number of new insights into Pep signaling mechanisms. ZmPROPEP and other poaceous precursors were found to contain multiple active Peps, a phenomenon not previously observed for this family. In all, seven new ZmPeps were identified and the peptides were found to have specific activities defined by the relative magnitude of their response output rather than by uniqueness. A striking correlation was observed between individual ZmPep-elicited changes in levels of jasmonic acid and ethylene and the magnitude of induced defense responses, indicating that ZmPeps may collectively regulate immune output through rheostat-like tuning of phytohormone levels. Peptide structure-function studies and ligand-receptor modeling revealed structural features critical to the function of ZmPeps and led to the identification of ZmPep5a as a potential antagonist peptide able to competitively inhibit the activity of other ZmPeps, a regulatory mechanism not previously observed for this family.


Asunto(s)
Péptidos/fisiología , Defensa de la Planta contra la Herbivoria , Zea mays/fisiología , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Edición Génica , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Genes de Plantas/genética , Péptidos/metabolismo , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Receptores de Péptidos/fisiología , Zea mays/genética , Zea mays/inmunología , Zea mays/metabolismo
9.
Nat Plants ; 4(3): 172-180, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29483684

RESUMEN

Localized control of cell death is crucial for the resistance of plants to pathogens. Papain-like cysteine proteases (PLCPs) regulate plant defence to drive cell death and protection against biotrophic pathogens. In maize (Zea mays), PLCPs are crucial in the orchestration of salicylic acid (SA)-dependent defence signalling. Despite this central role in immunity, it remains unknown how PLCPs are activated, and which downstream signals they induce to trigger plant immunity. Here, we discover an immune signalling peptide, Z. mays immune signalling peptide 1 (Zip1), which is produced after salicylic acid (SA) treatment. In vitro studies demonstrate that PLCPs are required to release bioactive Zip1 from its propeptide precursor. Conversely, Zip1 treatment strongly elicits SA accumulation in leaves. Moreover, transcriptome analyses revealed that Zip1 and SA induce highly overlapping transcriptional changes. Consequently, Zip1 promotes the infection of the necrotrophic fungus Botrytis cinerea, while it reduces virulence of the biotrophic fungus Ustilago maydis. Thus, Zip1 represents the previously missing signal that is released by PLCPs to activate SA defence signalling.


Asunto(s)
Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Salicílico/metabolismo , Zea mays/metabolismo , Perfilación de la Expresión Génica , Papaína/metabolismo , Péptido Hidrolasas/metabolismo , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Proteínas de Plantas/metabolismo , Transducción de Señal
10.
Mol Plant Pathol ; 19(4): 858-869, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28600875

RESUMEN

Plant elicitor peptides (Peps) are widely distributed among angiosperms, and have been shown to amplify immune responses in multiple plant families. Here, we characterize three Peps from soybean (Glycine max) and describe their effects on plant defences against two damaging agricultural pests, the root-knot nematode (Meloidogyne incognita) and the soybean cyst nematode (Heterodera glycines). Seed treatments with exogenous GmPep1, GmPep2 or GmPep3 significantly reduced the reproduction of both nematodes. Pep treatment also protected plants from the inhibitory effects of root-knot nematodes on above-ground growth, and up-regulated basal expression levels of nematode-responsive defence genes. GmPep1 induced the expression of its propeptide precursor (GmPROPEP1), a nucleotide-binding site leucine-rich repeat protein (NBS-LRR), a pectin methylesterase inhibitor (PMEI), Respiratory Burst Oxidase Protein D (RBOHD) and the accumulation of reactive oxygen species (ROS) in leaves. In addition, GmPep2 and GmPep3 seed treatments up-regulated RBOHD expression and ROS accumulation in roots and leaves. These results suggest that GmPeps activate plant defences through systemic transcriptional reprogramming and ROS signalling, and that Pep seed treatments represent a potential strategy for nematode management.


Asunto(s)
Glycine max/metabolismo , Glycine max/microbiología , Enfermedades de las Plantas/microbiología , Tylenchoidea/patogenicidad , Animales , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Semillas/metabolismo , Semillas/microbiología
11.
Plant Signal Behav ; 11(2): e1120395, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26669723

RESUMEN

Recently we investigated the function of the 9-lipoxygenase (LOX) derived cyclopentenones 10-oxo-11-phytoenoic acid (10-OPEA) and 10-oxo-11,15-phytodienoic acid (10-OPDA) and identified their C-14 and C-12 derivatives. 10-OPEA accumulation is elicited by fungal and insect attack and acts as a strong inhibitor of microbial and herbivore growth. Although structurally similar, comparative analyses between 10-OPEA and its 13-LOX analog 12-oxo-phytodienoic acid (12-OPDA) demonstrate specificity in transcript accumulation linked to detoxification, secondary metabolism, jasmonate regulation, and protease inhibition. As a potent cell death signal, 10-OPEA activates cysteine protease activity leading to ion leakage and apoptotic-like DNA fragmentation. In this study we further elucidate the distribution, abundance, and functional roles of 10-OPEA, 10-OPDA, and 12-OPDA, in diverse organs under pathogen- and insect-related stress.


Asunto(s)
Ciclopentanos/metabolismo , Estrés Fisiológico , Zea mays/fisiología , Vías Biosintéticas , Ciclopentanos/química , Herbivoria , Lipooxigenasas/química , Lipooxigenasas/metabolismo , Modelos Biológicos , Transducción de Señal , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
12.
Proc Natl Acad Sci U S A ; 112(36): 11407-12, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26305953

RESUMEN

Plant damage promotes the interaction of lipoxygenases (LOXs) with fatty acids yielding 9-hydroperoxides, 13-hydroperoxides, and complex arrays of oxylipins. The action of 13-LOX on linolenic acid enables production of 12-oxo-phytodienoic acid (12-OPDA) and its downstream products, termed "jasmonates." As signals, jasmonates have related yet distinct roles in the regulation of plant resistance against insect and pathogen attack. A similar pathway involving 9-LOX activity on linolenic and linoleic acid leads to the 12-OPDA positional isomer, 10-oxo-11-phytodienoic acid (10-OPDA) and 10-oxo-11-phytoenoic acid (10-OPEA), respectively; however, physiological roles for 9-LOX cyclopentenones have remained unclear. In developing maize (Zea mays) leaves, southern leaf blight (Cochliobolus heterostrophus) infection results in dying necrotic tissue and the localized accumulation of 10-OPEA, 10-OPDA, and a series of related 14- and 12-carbon metabolites, collectively termed "death acids." 10-OPEA accumulation becomes wound inducible within fungal-infected tissues and at physiologically relevant concentrations acts as a phytoalexin by suppressing the growth of fungi and herbivores including Aspergillus flavus, Fusarium verticillioides, and Helicoverpa zea. Unlike previously established maize phytoalexins, 10-OPEA and 10-OPDA display significant phytotoxicity. Both 12-OPDA and 10-OPEA promote the transcription of defense genes encoding glutathione S transferases, cytochrome P450s, and pathogenesis-related proteins. In contrast, 10-OPEA only weakly promotes the accumulation of multiple protease inhibitor transcripts. Consistent with a role in dying tissue, 10-OPEA application promotes cysteine protease activation and cell death, which is inhibited by overexpression of the cysteine protease inhibitor maize cystatin-9. Unlike jasmonates, functions for 10-OPEA and associated death acids are consistent with specialized roles in local defense reactions.


Asunto(s)
Ciclopentanos/metabolismo , Lipooxigenasa/metabolismo , Proteínas de Plantas/metabolismo , Sesquiterpenos/metabolismo , Zea mays/metabolismo , Ascomicetos/fisiología , Ciclopentanos/química , Ciclopentanos/farmacología , Cistatinas/genética , Cistatinas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Interacciones Huésped-Patógeno , Immunoblotting , Lipooxigenasa/genética , Espectroscopía de Resonancia Magnética , Estructura Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxilipinas/química , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sesquiterpenos/química , Sesquiterpenos/farmacología , Zea mays/genética , Zea mays/microbiología , Fitoalexinas
13.
Plant Physiol ; 160(3): 1468-78, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23008466

RESUMEN

Plants respond to insect herbivory through the production of biochemicals that function as either direct defenses or indirect defenses via the attraction of natural enemies. While attack by closely related insect pests can result in distinctive levels of induced plant defenses, precise biochemical mechanisms responsible for differing responses remain largely unknown. Cowpea (Vigna unguiculata) responds to Fall armyworm (Spodoptera frugiperda) herbivory through the detection of fragments of chloroplastic ATP synthase γ-subunit proteins, termed inceptin-related peptides, present in larval oral secretions (OS). In contrast to generalists like Fall armyworm, OS of the legume-specializing velvetbean caterpillar (VBC; Anticarsia gemmatalis) do not elicit ethylene production and demonstrate significantly lower induced volatile emission in direct herbivory comparisons. Unlike all other Lepidoptera OS examined, which preferentially contain inceptin (Vu-In; +ICDINGVCVDA-), VBC OS contain predominantly a C-terminal truncated peptide, Vu-In(-A) (+ICDINGVCVD-). Vu-In(-A) is both inactive and functions as a potent naturally occurring antagonist of Vu-In-induced responses. To block antagonist production, amino acid substitutions at the C terminus were screened for differences in VBC gut proteolysis. A valine-substituted peptide (Vu-In(ΔV); +ICDINGVCVDV-) retaining full elicitor activity was found to accumulate in VBC OS. Compared with the native polypeptide, VBC that previously ingested 500 pmol of the valine-modified chloroplastic ATP synthase γ-subunit precursor elicited significantly stronger plant responses in herbivory assays. We demonstrate that a specialist herbivore minimizes the activation of defenses by converting an elicitor into an antagonist effector and identify an amino acid substitution that recovers these induced plant defenses to a level observed with generalist herbivores.


Asunto(s)
Sustitución de Aminoácidos/genética , Fabaceae/inmunología , Fabaceae/parasitología , Herbivoria/fisiología , Mariposas Nocturnas/fisiología , Secuencia de Aminoácidos , Animales , ATPasas de Translocación de Protón de Cloroplastos/metabolismo , Fabaceae/efectos de los fármacos , Herbivoria/efectos de los fármacos , Larva/efectos de los fármacos , Larva/fisiología , Modelos Biológicos , Datos de Secuencia Molecular , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/enzimología , Péptidos/química , Péptidos/farmacología , Spodoptera/efectos de los fármacos
14.
Plant J ; 72(6): 882-93, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22709376

RESUMEN

Diverse pathogens secrete effector proteins into plant cells to manipulate host cellular processes. Oomycete pathogens contain large complements of predicted effector genes defined by an RXLR host cell entry motif. The genome of Hyaloperonospora arabidopsidis (Hpa, downy mildew of Arabidopsis) contains at least 134 candidate RXLR effector genes. Only a small subset of these genes is conserved in related oomycetes from the Phytophthora genus. Here, we describe a comparative functional characterization of the Hpa RXLR effector gene HaRxL96 and a homologous gene, PsAvh163, from the Glycine max (soybean) pathogen Phytophthora sojae. HaRxL96 and PsAvh163 are induced during the early stages of infection and carry a functional RXLR motif that is sufficient for protein uptake into plant cells. Both effectors can suppress immune responses in soybean. HaRxL96 suppresses immunity in Nicotiana benthamiana, whereas PsAvh163 induces an HR-like cell death response in Nicotiana that is dependent on RAR1 and Hsp90.1. Transgenic Arabidopsis plants expressing HaRxL96 or PsAvh163 exhibit elevated susceptibility to virulent and avirulent Hpa, as well as decreased callose deposition in response to non-pathogenic Pseudomonas syringae. Both effectors interfere with defense marker gene induction, but do not affect salicylic acid biosynthesis. Together, these experiments demonstrate that evolutionarily conserved effectors from different oomycete species can suppress immunity in plant species that are divergent from the source pathogen's host.


Asunto(s)
Glycine max/inmunología , Nicotiana/inmunología , Oomicetos/fisiología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Proteínas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Evolución Biológica , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucanos/metabolismo , Interacciones Huésped-Patógeno , Datos de Secuencia Molecular , Phytophthora/fisiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Plantas Modificadas Genéticamente , Estructura Terciaria de Proteína , Pseudomonas syringae/fisiología , Alineación de Secuencia , Glycine max/genética , Glycine max/microbiología , Nicotiana/genética , Nicotiana/microbiología , Transgenes
15.
Curr Opin Plant Biol ; 14(4): 351-7, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21636314

RESUMEN

Plant defense responses against invading organisms are initiated through the perception of molecules associated with attacking microbes and herbivores by pattern recognition receptors. In addition to elicitor molecules derived from attacking organisms, plants recognize host-derived molecules. These endogenous elicitors induce and amplify the defense responses against invading organisms both locally and systemically. Several classes of plant-derived molecules elicit defense, including cell wall fragments and peptides. Endogenous peptide elicitors have been discovered in species across the plant kingdom, and their role regulating immunity to both herbivores and pathogens is becoming increasingly appreciated. In this review, we will focus on the five known endogenous peptide elicitor families, summarize their properties, and discuss research goals to further understanding of plant innate immunity.


Asunto(s)
Inmunidad de la Planta , Proteínas de Plantas/metabolismo , Plantas/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Péptidos Catiónicos Antimicrobianos/inmunología , Péptidos Catiónicos Antimicrobianos/metabolismo , Calcio/metabolismo , Resistencia a la Enfermedad , Péptidos/inmunología , Proteínas de Plantas/inmunología , Plantas/metabolismo , Plantas/microbiología , Inhibidores de Proteasas/metabolismo , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
16.
Plant Physiol ; 155(3): 1325-38, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21205619

RESUMEN

ZmPep1 is a bioactive peptide encoded by a previously uncharacterized maize (Zea mays) gene, ZmPROPEP1. ZmPROPEP1 was identified by sequence similarity as an ortholog of the Arabidopsis (Arabidopsis thaliana) AtPROPEP1 gene, which encodes the precursor protein of elicitor peptide 1 (AtPep1). Together with its receptors, AtPEPR1 and AtPEPR2, AtPep1 functions to activate and amplify innate immune responses in Arabidopsis and enhances resistance to both Pythium irregulare and Pseudomonas syringae. Candidate orthologs to the AtPROPEP1 gene have been identified from a variety of crop species; however, prior to this study, activities of the respective peptides encoded by these orthologs were unknown. Expression of the ZmPROPEP1 gene is induced by fungal infection and treatment with jasmonic acid or ZmPep1. ZmPep1 activates de novo synthesis of the hormones jasmonic acid and ethylene and induces the expression of genes encoding the defense proteins endochitinase A, PR-4, PRms, and SerPIN. ZmPep1 also stimulates the expression of Benzoxazineless1, a gene required for the biosynthesis of benzoxazinoid defenses, and the accumulation of 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside in leaves. To ascertain whether ZmPep1-induced defenses affect resistance, maize plants were pretreated with the peptide prior to infection with fungal pathogens. Based on cell death and lesion severity, ZmPep1 pretreatment was found to enhance resistance to both southern leaf blight and anthracnose stalk rot caused by Cochliobolis heterostrophus and Colletotrichum graminicola, respectively. We present evidence that peptides belonging to the Pep family have a conserved function across plant species as endogenous regulators of innate immunity and may have potential for enhancing disease resistance in crops.


Asunto(s)
Arabidopsis/metabolismo , Inmunidad Innata/inmunología , Péptidos/metabolismo , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Homología de Secuencia de Aminoácido , Zea mays/inmunología , Secuencia de Aminoácidos , Ascomicetos/efectos de los fármacos , Ascomicetos/fisiología , Benzoxazinas/metabolismo , Colletotrichum/efectos de los fármacos , Colletotrichum/fisiología , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Inmunidad Innata/efectos de los fármacos , Indoles/metabolismo , Datos de Secuencia Molecular , Oxilipinas/metabolismo , Péptidos/química , Péptidos/farmacología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Transducción de Señal/efectos de los fármacos , Transcripción Genética , Zea mays/efectos de los fármacos , Zea mays/genética , Zea mays/microbiología , ortoaminobenzoatos/metabolismo
17.
Plant Cell ; 22(2): 508-22, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20179141

RESUMEN

Pep1 is a 23-amino acid peptide that enhances resistance to a root pathogen, Pythium irregulare. Pep1 and its homologs (Pep2 to Pep7) are endogenous amplifiers of innate immunity of Arabidopsis thaliana that induce the transcription of defense-related genes and bind to PEPR1, a plasma membrane leucine-rich repeat (LRR) receptor kinase. Here, we identify a plasma membrane LRR receptor kinase, designated PEPR2, that has 76% amino acid similarity to PEPR1, and we characterize its role in the perception of Pep peptides and defense responses. Both PEPR1 and PEPR2 were transcriptionally induced by wounding, treatment with methyl jasmonate, Pep peptides, and pathogen-associated molecular patterns. The effects of Pep1 application on defense-related gene induction and enhancement of resistance to Pseudomonas syringae pv tomato DC3000 were partially reduced in single mutants of PEPR1 and PEPR2 and abolished completely in double mutants. Photoaffinity labeling and binding assays using transgenic tobacco (Nicotiana tabacum) cells expressing PEPR1 and PEPR2 clearly demonstrated that PEPR1 is a receptor for Pep1-6 and that PEPR2 is a receptor for Pep1 and Pep2. Our analysis demonstrates differential binding affinities of two receptors with a family of peptide ligands and the corresponding physiological effects of the specific receptor-ligand interactions. Therefore, we demonstrate that, through perception of Peps, PEPR1 and PEPR2 contribute to defense responses in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Datos de Secuencia Molecular , Etiquetas de Fotoafinidad , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA