Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plants (Basel) ; 12(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37111854

RESUMEN

Sexual breeding at the tetraploid level is a promising strategy for rootstock breeding in citrus. Due to the interspecific origin of most of the conventional diploid citrus rootstocks that produced the tetraploid germplasm, the optimization of this strategy requires better knowledge of the meiotic behavior of the tetraploid parents. This work used Genotyping By Sequencing (GBS) data from 103 tetraploid hybrids to study the meiotic behavior and generate a high-density recombination landscape for their tetraploid intergenic Swingle citrumelo and interspecific Volkamer lemon progenitors. A genetic association study was performed with root architecture traits. For citrumelo, high preferential chromosome pairing was revealed and led to an intermediate inheritance with a disomic tendency. Meiosis in Volkamer lemon was more complex than that of citrumelo, with mixed segregation patterns from disomy to tetrasomy. The preferential pairing resulted in low interspecific recombination levels and high interspecific heterozygosity transmission by the diploid gametes. This meiotic behavior affected the efficiency of Quantitative Trait Loci (QTL) detection. Nevertheless, it enabled a high transmission of disease and pest resistance candidate genes from P. trifoliata that are heterozygous in the citrumelo progenitor. The tetrazyg strategy, using doubled diploids of interspecific origin as parents, appears to be efficient in transferring the dominant traits selected at the parental level to the tetraploid progenies.

2.
Front Plant Sci ; 13: 1030862, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407590

RESUMEN

Huanglongbing (HLB) is a disease that is responsible for the death of millions of trees worldwide. The bacterial causal agent belongs to Candidatus Liberibacter spp., which is transmitted by psyllids. The bacterium lead most of the time to a reaction of the tree associated with callose synthesis at the phloem sieve plate. Thus, the obstruction of pores providing connections between adjacent sieve elements will limit the symplastic transport of the sugars and starches synthesized through photosynthesis. In the present article, we investigated the impact of the use of tetraploid Swingle citrumelo (Citrus paradisi Macfrad × Poncirus trifoliata [L.] Raf) rootstock on HLB tolerance, compared to its respective diploid. HLB-infected diploid and tetraploid rootstocks were investigated when grafted with Mexican and Persian limes. Secondary roots were anatomically studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to observe callose deposition at the phloem sieve plate and to evaluate the impact of the bacterium's presence at the cellular level. Voltammetry of immobilized microparticles (VIMP) in roots was applied to determine the oxidative stress status of root samples. In the field, Mexican and Persian lime leaves of trees grafted onto tetraploid rootstock presented less symptoms of HLB. Anatomical analysis showed much stronger secondary root degradation in diploid rootstock, compared to tetraploid rootstock. Analysis of the root sieve plate in control root samples showed that pores were approximately 1.8-fold larger in tetraploid Swingle citrumelo than in its respective diploid. SEM analyses of root samples did not reveal any callose deposition into pores of diploid and tetraploid genotypes. VIMP showed limited oxidative stress in tetraploid samples, compared to diploid ones. These results were even strongly enhanced when rootstocks were grafted with Persian limes, compared to Mexican limes, which was corroborated by stronger polyphenol contents. TEM analysis showed that the bacteria was present in both ploidy root samples with no major impacts detected on cell walls or cell structures. These results reveal that tetraploid Swingle citrumelo rootstock confers better tolerance to HLB than diploid. Additionally, an even stronger tolerance is achieved when the triploid Persian lime scion is associated.

3.
Sci Rep ; 8(1): 10094, 2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973700

RESUMEN

Root damage due to aluminum (Al) toxicity restricts crop production on acidic soils, which are extensive in the tropics. The sorghum root Al-activated citrate transporter, SbMATE, underlies the Al tolerance locus, AltSB, and increases grain yield under Al toxicity. Here, AltSB loci associated with Al tolerance were converted into Amplification Refractory Mutation System (ARMS) markers, which are cost effective and easy to use. A DNA pooling strategy allowed us to identify accessions harboring rare favorable AltSB alleles in three germplasm sets while greatly reducing genotyping needs. Population structure analysis revealed that favorable AltSB alleles are predominantly found in subpopulations enriched with guinea sorghums, supporting a possible Western African origin of AltSB. The efficiency of allele mining in recovering Al tolerance accessions was the highest in the largest and highly diverse germplasm set, with a 10-fold reduction in the number of accessions that would need to be phenotyped in the absence of marker information. Finally, Al tolerant accessions were found to rely on SbMATE to exclude Al3+ from sensitive sites in the root apex. This study emphasizes gene-specific markers as important tools for efficiently mining useful rare alleles in diverse germplasm, bridging genetic resource conservation efforts and pre-breeding for Al tolerance.


Asunto(s)
Proteínas Portadoras/genética , Variación Genética , Raíces de Plantas/efectos de los fármacos , Sorghum/genética , Alelos , Aluminio/toxicidad , Cruzamiento , Grano Comestible/efectos de los fármacos , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Marcadores Genéticos/genética , Mutación , Raíces de Plantas/genética , Sitios de Carácter Cuantitativo/genética , Sorghum/efectos de los fármacos , Sorghum/crecimiento & desarrollo
4.
PLoS One ; 6(6): e20830, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21695088

RESUMEN

BACKGROUND: Acid soils comprise up to 50% of the world's arable lands and in these areas aluminum (Al) toxicity impairs root growth, strongly limiting crop yield. Food security is thereby compromised in many developing countries located in tropical and subtropical regions worldwide. In sorghum, SbMATE, an Al-activated citrate transporter, underlies the Alt(SB) locus on chromosome 3 and confers Al tolerance via Al-activated root citrate release. METHODOLOGY: Population structure was studied in 254 sorghum accessions representative of the diversity present in cultivated sorghums. Al tolerance was assessed as the degree of root growth inhibition in nutrient solution containing Al. A genetic analysis based on markers flanking Alt(SB) and SbMATE expression was undertaken to assess a possible role for Alt(SB) in Al tolerant accessions. In addition, the mode of gene action was estimated concerning the Al tolerance trait. Comparisons between models that include population structure were applied to assess the importance of each subpopulation to Al tolerance. CONCLUSION/SIGNIFICANCE: Six subpopulations were revealed featuring specific racial and geographic origins. Al tolerance was found to be rather rare and present primarily in guinea and to lesser extent in caudatum subpopulations. Alt(SB) was found to play a role in Al tolerance in most of the Al tolerant accessions. A striking variation was observed in the mode of gene action for the Al tolerance trait, which ranged from almost complete recessivity to near complete dominance, with a higher frequency of partially recessive sources of Al tolerance. A possible interpretation of our results concerning the origin and evolution of Al tolerance in cultivated sorghum is discussed. This study demonstrates the importance of deeply exploring the crop diversity reservoir both for a comprehensive view of the dynamics underlying the distribution and function of Al tolerance genes and to design efficient molecular breeding strategies aimed at enhancing Al tolerance.


Asunto(s)
Aluminio/toxicidad , Biodiversidad , Sorghum/efectos de los fármacos , Sorghum/fisiología , Cruzamiento , Evolución Molecular , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Repeticiones de Microsatélite/genética , Mutación , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Suelo , Sorghum/genética , Sorghum/crecimiento & desarrollo
5.
Genet. mol. biol ; 33(4): 795-806, 2010. graf, tab
Artículo en Inglés | LILACS | ID: lil-571541

RESUMEN

Sequences potentially associated with coffee resistance to diseases were identified by in silico analyses using the database of the Brazilian Coffee Genome Project (BCGP). Keywords corresponding to plant resistance mechanisms to pathogens identified in the literature were used as baits for data mining. Expressed sequence tags (ESTs) related to each of these keywords were identified with tools available in the BCGP bioinformatics platform. A total of 11,300 ESTs were mined. These ESTs were clustered and formed 979 EST-contigs with similarities to chitinases, kinases, cytochrome P450 and nucleotide binding site-leucine rich repeat (NBS-LRR) proteins, as well as with proteins related to disease resistance, pathogenesis, hypersensitivity response (HR) and plant defense responses to diseases. The 140 EST-contigs identified through the keyword NBS-LRR were classified according to function. This classification allowed association of the predicted products of EST-contigs with biological processes, including host defense and apoptosis, and with molecular functions such as nucleotide binding and signal transducer activity. Fisher's exact test was used to examine the significance of differences in contig expression between libraries representing the responses to biotic stress challenges and other libraries from the BCGP. This analysis revealed seven contigs highly similar to catalase, chitinase, protein with a BURP domain and unknown proteins. The involvement of these coffee proteins in plant responses to disease is discussed.


Asunto(s)
Humanos , alfa 1-Antitripsina , Ciencia de la Información/estadística & datos numéricos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA