Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nature ; 610(7931): 319-326, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36224417

RESUMEN

Self-organizing neural organoids represent a promising in vitro platform with which to model human development and disease1-5. However, organoids lack the connectivity that exists in vivo, which limits maturation and makes integration with other circuits that control behaviour impossible. Here we show that human stem cell-derived cortical organoids transplanted into the somatosensory cortex of newborn athymic rats develop mature cell types that integrate into sensory and motivation-related circuits. MRI reveals post-transplantation organoid growth across multiple stem cell lines and animals, whereas single-nucleus profiling shows progression of corticogenesis and the emergence of activity-dependent transcriptional programs. Indeed, transplanted cortical neurons display more complex morphological, synaptic and intrinsic membrane properties than their in vitro counterparts, which enables the discovery of defects in neurons derived from individuals with Timothy syndrome. Anatomical and functional tracings show that transplanted organoids receive thalamocortical and corticocortical inputs, and in vivo recordings of neural activity demonstrate that these inputs can produce sensory responses in human cells. Finally, cortical organoids extend axons throughout the rat brain and their optogenetic activation can drive reward-seeking behaviour. Thus, transplanted human cortical neurons mature and engage host circuits that control behaviour. We anticipate that this approach will be useful for detecting circuit-level phenotypes in patient-derived cells that cannot otherwise be uncovered.


Asunto(s)
Vías Nerviosas , Organoides , Animales , Animales Recién Nacidos , Trastorno Autístico , Humanos , Síndrome de QT Prolongado , Motivación , Neuronas/fisiología , Optogenética , Organoides/citología , Organoides/inervación , Organoides/trasplante , Ratas , Recompensa , Corteza Somatosensorial/citología , Corteza Somatosensorial/fisiología , Células Madre/citología , Sindactilia
2.
Nature ; 594(7862): 277-282, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34040258

RESUMEN

Neurons have recently emerged as essential cellular constituents of the tumour microenvironment, and their activity has been shown to increase the growth of a diverse number of solid tumours1. Although the role of neurons in tumour progression has previously been demonstrated2, the importance of neuronal activity to tumour initiation is less clear-particularly in the setting of cancer predisposition syndromes. Fifteen per cent of individuals with the neurofibromatosis 1 (NF1) cancer predisposition syndrome (in which tumours arise in close association with nerves) develop low-grade neoplasms of the optic pathway (known as optic pathway gliomas (OPGs)) during early childhood3,4, raising  the possibility that postnatal light-induced activity of the optic nerve drives tumour initiation. Here we use an authenticated mouse model of OPG driven by mutations in the neurofibromatosis 1 tumour suppressor gene (Nf1)5 to demonstrate that stimulation of optic nerve activity increases optic glioma growth, and that decreasing visual experience via light deprivation prevents tumour formation and maintenance. We show that the initiation of Nf1-driven OPGs (Nf1-OPGs) depends on visual experience during a developmental period in which Nf1-mutant mice are susceptible to tumorigenesis. Germline Nf1 mutation in retinal neurons results in aberrantly increased shedding of neuroligin 3 (NLGN3) within the optic nerve in response to retinal neuronal activity. Moreover, genetic Nlgn3 loss or pharmacological inhibition of NLGN3 shedding blocks the formation and progression of Nf1-OPGs. Collectively, our studies establish an obligate role for neuronal activity in the development of some types of brain tumours, elucidate a therapeutic strategy to reduce OPG incidence or mitigate tumour progression, and underscore the role of Nf1mutation-mediated dysregulation of neuronal signalling pathways in mouse models of the NF1 cancer predisposition syndrome.


Asunto(s)
Transformación Celular Neoplásica/genética , Genes de Neurofibromatosis 1 , Mutación , Neurofibromina 1/genética , Neuronas/metabolismo , Glioma del Nervio Óptico/genética , Glioma del Nervio Óptico/patología , Animales , Astrocitoma/genética , Astrocitoma/patología , Moléculas de Adhesión Celular Neuronal/deficiencia , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Transformación Celular Neoplásica/efectos de la radiación , Femenino , Mutación de Línea Germinal , Humanos , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de la radiación , Nervio Óptico/citología , Nervio Óptico/efectos de la radiación , Estimulación Luminosa , Retina/citología , Retina/efectos de la radiación
3.
eNeuro ; 3(4)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27517089

RESUMEN

Neocortical pyramidal cells (PYRs) receive synaptic inputs from many types of GABAergic interneurons. Connections between parvalbumin (PV)-positive, fast-spiking interneurons ("PV cells") and PYRs are characterized by perisomatic synapses and high-amplitude, short-latency IPSCs. Here, we present novel methods to study the functional influence of PV cells on layer 5 PYRs using optogenetics combined with laser-scanning photostimulation (LSPS). First, we examined the strength and spatial distribution of PV-to-PYR inputs. To that end, the fast channelrhodopsin variant AAV5-EF1α-DIO-hChR2(E123T)-eYFP (ChETA) was expressed in PV cells in somatosensory cortex of mice using an adeno-associated virus-based viral construct. Focal blue illumination (100-150 µm half-width) was directed through the microscope objective to excite PV cells along a spatial grid covering layers 2-6, while IPSCs were recorded in layer 5 PYRs. The resulting optogenetic input maps showed evoked PV cell inputs originating from an ∼500-µm-diameter area surrounding the recorded PYR. Evoked IPSCs had the short-latency/high-amplitude characteristic of PV cell inputs. Second, we investigated how PV cell activity modulates PYR output in response to synaptic excitation. We expressed halorhodopsin (eNpHR3.0) in PV cells using the same strategy as for ChETA. Yellow illumination hyperpolarized eNpHR3.0-expressing PV cells, effectively preventing action potential generation and thus decreasing the inhibition of downstream targets. Synaptic input maps onto layer 5 PYRs were acquired using standard glutamate-photolysis LSPS either with or without full-field yellow illumination to silence PV cells. The resulting IPSC input maps selectively lacked short-latency perisomatic inputs, while EPSC input maps showed increased connectivity, particularly from upper layers. This indicates that glutamate uncaging LSPS-based excitatory synaptic maps will consistently underestimate connectivity.


Asunto(s)
Mapeo Encefálico , Inhibición Neural/fisiología , Optogenética , Células Piramidales/fisiología , Corteza Somatosensorial/fisiología , Sinapsis/fisiología , Animales , Mapeo Encefálico/métodos , Potenciales Postsinápticos Excitadores , Femenino , Potenciales Postsinápticos Inhibidores , Masculino , Ratones Transgénicos , Optogenética/métodos , Células Piramidales/citología , Corteza Somatosensorial/citología , Técnicas de Cultivo de Tejidos
4.
Proc Natl Acad Sci U S A ; 112(12): 3805-10, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25775522

RESUMEN

Initiating and regulating vertebrate reproduction requires pulsatile release of gonadotropin-releasing hormone (GnRH1) from the hypothalamus. Coordinated GnRH1 release, not simply elevated absolute levels, effects the release of pituitary gonadotropins that drive steroid production in the gonads. However, the mechanisms underlying synchronization of GnRH1 neurons are unknown. Control of synchronicity by gap junctions between GnRH1 neurons has been proposed but not previously found. We recorded simultaneously from pairs of transgenically labeled GnRH1 neurons in adult male Astatotilapia burtoni cichlid fish. We report that GnRH1 neurons are strongly and uniformly interconnected by electrical synapses that can drive spiking in connected cells and can be reversibly blocked by meclofenamic acid. Our results suggest that electrical synapses could promote coordinated spike firing in a cellular assemblage of GnRH1 neurons to produce the pulsatile output necessary for activation of the pituitary and reproduction.


Asunto(s)
Cíclidos/fisiología , Sinapsis Eléctricas , Hormona Liberadora de Gonadotropina/metabolismo , Animales , Conexinas/metabolismo , Femenino , Uniones Comunicantes , Redes Reguladoras de Genes , Proteínas Fluorescentes Verdes/metabolismo , Hibridación in Situ , Masculino , Ácido Meclofenámico/química , Modelos Neurológicos , Neuronas/fisiología , Hipófisis/metabolismo , Transmisión Sináptica , Transgenes
6.
J Physiol ; 588(Pt 22): 4401-14, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20819946

RESUMEN

Sodium-potassium ATPase ('Na(+)-K(+) ATPase') contributes to the maintenance of the resting membrane potential and the transmembrane gradients for Na(+) and K(+) in neurons. Activation of Na(+)-K(+) ATPase may be important in controlling increases in intracellular sodium during periods of increased neuronal activity. Down-regulation of Na(+)-K(+) ATPase activity is implicated in numerous CNS disorders, including epilepsy. Although Na(+)-K(+) ATPase is present in all neurons, little is known about its activity in different subclasses of neocortical cells. We assessed the physiological properties of Na(+)-K(+) ATPase in fast-spiking (FS) interneurons and pyramidal (PYR) cells to test the hypothesis that Na(+)-K(+) ATPase activity would be relatively greater in neurons that generated high frequency action potentials (the FS cells). Whole-cell patch clamp recordings were made from FS and PYR neurons in layer V of rat sensorimotor cortical slices maintained in vitro using standard techniques. Bath perfusion of Na(+)-K(+) ATPase antagonists (ouabain or dihydro-ouabain) induced either a membrane depolarization in current clamp, or inward current under voltage clamp in both cell types. PYR neurons were divided into two subpopulations based on the amplitude of the voltage or current shift in response to Na(+)-K(+) ATPase blockade. The two PYR cell groups did not differ significantly in electrophysiological properties including resting membrane potential, firing pattern, input resistance and capacitance. Membrane voltage responses of FS cells to Na(+)-K(+) ATPase blockade were intermediate between the two PYR cell groups (P < 0.05). The resting Na(+)-K(+) ATPase current density in FS interneurons, assessed by application of blockers, was 3- to 7-fold larger than in either group of PYR neurons. Na(+)-K(+) ATPase activity was increased either through direct Na(+) loading via the patch pipette or by focal application of glutamate (20 mM puffs). Under these conditions FS interneurons exhibited the largest increase in Na(+)-K(+) ATPase activity. We conclude that resting Na(+)-K(+) ATPase activity and sensitivity to changes in internal Na(+) concentration vary between and within classes of cortical neurons. These differences may have important consequences in pathophysiological disorders associated with down-regulation of Na(+)-K(+) ATPase and hyperexcitability within cortical networks.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Cerebral/enzimología , Neuronas/enzimología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Masculino , Ratones , Ratones Endogámicos ICR , Neuronas/efectos de los fármacos , Ouabaína/farmacología , Ratas , Ratas Sprague-Dawley
7.
Cereb Cortex ; 20(12): 2926-38, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20338974

RESUMEN

Cortical dysplasias frequently underlie neurodevelopmental disorders and epilepsy. Rats with a neonatally induced cortical microgyrus [freeze-lesion (FL)], a model of human polymicrogyria, display epileptiform discharges in vitro. We probed excitatory and inhibitory connectivity onto neocortical pyramidal neurons in layers 2/3 and 5 of postnatal day 16-22 rats, approximately 1-2 mm lateral of the lesion, using laser scanning photostimulation (LSPS)/glutamate uncaging. Excitatory input from deep and supragranular layers to layer 5 pyramidal cells was greater in FL cortex, while no significant differences were seen in layer 2/3 cells. The increased input was due to a greater number of LSPS-evoked excitatory postsynaptic currents (EPSCs), without differences in amplitude or kinetics. Inhibitory input was increased in a region-specific manner in pyramidal cells in FL cortex, due to an increased inhibitory postsynaptic current (IPSC) amplitude. Connectivity within layer 5, parts of which are destroyed during lesioning, was more severely affected than connectivity in layer 2/3. Thus, we observed 2 distinct mechanisms of altered synaptic input: 1) increased EPSC frequency suggesting an increased number of excitatory synapses and 2) higher IPSC amplitude, suggesting an increased strength of inhibitory synapses. These increases in both excitatory and inhibitory connectivity may limit the extent of circuit hyperexcitability.


Asunto(s)
Malformaciones del Desarrollo Cortical/fisiopatología , Células Piramidales/fisiopatología , Transmisión Sináptica/fisiología , Animales , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Vías Nerviosas/fisiopatología , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Sinapsis/metabolismo
8.
J Neurosci ; 26(25): 6813-22, 2006 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-16793888

RESUMEN

Valproate (VPA) can suppress absence and other seizures, but its precise mechanisms of action are not completely understood. We investigated whether VPA influences the expression of neuropeptide Y (NPY), an endogenous anticonvulsant. Chronic VPA administration to young rats (300-600 mg.kg(-1).d(-1) in divided doses over 4 d) resulted in a 30-50% increase in NPY mRNA and protein expression in the nucleus reticularis thalami (nRt) and hippocampus, but not in the neocortex, as shown by real-time PCR, radioimmunoassay, and immunohistochemistry. No increased expression was observed after a single acute dose of VPA. Chronic treatment with the pharmacologically inactive VPA analog octanoic acid did not elicit changes in NPY expression. No significant expression changes could be shown for the mRNAs of the Y1 receptor or of the neuropeptides somatostatin, vasoactive intestinal polypeptide, and choleocystokinin. Fewer synchronous spontaneous epileptiform oscillations were recorded in thalamic slices from VPA-treated animals, and oscillation duration as well as the period of spontaneous and evoked oscillations were decreased. Application of the Y1 receptor inhibitor N2-(diphenylacetyl)-N-[(4-hydroxyphenyl)methyl]-D-arginine-amide (BIBP3226) enhanced thalamic oscillations, indicating that NPY is released during those oscillations and acts to downregulate oscillatory strength. Chronic VPA treatment significantly potentiated the effect of BIBP3226 on oscillation duration but not on oscillation period. These results demonstrate a novel mechanism for the antiepileptic actions of chronic VPA therapy.


Asunto(s)
Anticonvulsivantes/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Neuropéptido Y/metabolismo , Transducción de Señal/efectos de los fármacos , Ácido Valproico/administración & dosificación , Potenciales de Acción/efectos de los fármacos , Análisis de Varianza , Animales , Animales Recién Nacidos , Arginina/análogos & derivados , Arginina/farmacología , Esquema de Medicación , Regulación de la Expresión Génica/fisiología , Inmunohistoquímica/métodos , Técnicas In Vitro , Neuropéptido Y/genética , Fosfopiruvato Hidratasa/metabolismo , ARN Mensajero/biosíntesis , Radioinmunoensayo/métodos , Ratas , Ratas Sprague-Dawley , Receptores de Neuropéptido Y/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Factores de Tiempo
9.
J Neurosci ; 23(7): 2751-8, 2003 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-12684461

RESUMEN

Ascending pathways mediated by monoamine neurotransmitters regulate the firing mode of thalamocortical neurons and modulate the state of brain activity. We hypothesized that specific neuropeptides might have similar actions. The effects of vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) were tested on thalamocortical neurons using whole-cell patch-clamp techniques applied to visualized neurons in rat brain slices. VIP (2 microm) and PACAP (100 nm) reversibly depolarized thalamocortical neurons (7.8 +/- 0.6 mV; n = 16), reduced the membrane resistance by 33 +/- 3%, and could convert the firing mode from bursting to tonic. These effects on resting membrane potential and membrane resistance persisted in the presence of TTX. Morphologically diverse thalamocortical neurons located in widespread regions of thalamus were all depolarized by VIP and PACAP38. In voltage-clamp mode, we found that VIP and PACAP38 reversibly activated a hyperpolarization-activated cationic current (I(H)) in thalamocortical neurons and altered voltage- and time-dependent activation properties of the current. The effects of VIP on membrane conductance were abolished by the hyperpolarization-activated cyclic-nucleotide-gated channel (HCN)-specific antagonist ZD7288, showing that HCN channels are the major target of VIP modulation. The effects of VIP and PACAP38 on HCN channels were mediated by PAC(1) receptors and cAMP. The actions of PACAP-related peptides on thalamocortical neurons suggest an additional and novel endogenous neurophysiological pathway that may influence both normal and pathophysiological thalamocortical rhythm generation and have important behavioral effects on sensory processing and sleep-wake cycles.


Asunto(s)
Canales Iónicos/fisiología , Neuronas/fisiología , Neuropéptidos/farmacología , Tálamo/fisiología , Péptido Intestinal Vasoactivo/farmacología , Animales , Encéfalo/fisiología , Cationes , AMP Cíclico/fisiología , Conductividad Eléctrica , Neuronas/efectos de los fármacos , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Ratas , Ratas Sprague-Dawley , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Receptores de la Hormona Hipofisaria/fisiología , Tálamo/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA