Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
2.
Proc Natl Acad Sci U S A ; 121(14): e2304897121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38547061

RESUMEN

While the existence and functional role of class C G-protein-coupled receptors (GPCR) dimers is well established, there is still a lack of consensus regarding class A and B GPCR multimerization. This lack of consensus is largely due to the inherent challenges of demonstrating the presence of multimeric receptor complexes in a physiologically relevant cellular context. The C-X-C motif chemokine receptor 4 (CXCR4) is a class A GPCR that is a promising target of anticancer therapy. Here, we investigated the potential of CXCR4 to form multimeric complexes with other GPCRs and characterized the relative size of the complexes in a live-cell environment. Using a bimolecular fluorescence complementation (BiFC) assay, we identified the ß2 adrenergic receptor (ß2AR) as an interaction partner. To investigate the molecular scale details of CXCR4-ß2AR interactions, we used a time-resolved fluorescence spectroscopy method called pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). PIE-FCCS can resolve membrane protein density, diffusion, and multimerization state in live cells at physiological expression levels. We probed CXCR4 and ß2AR homo- and heteromultimerization in model cell lines and found that CXCR4 assembles into multimeric complexes larger than dimers in MDA-MB-231 human breast cancer cells and in HCC4006 human lung cancer cells. We also found that ß2AR associates with CXCR4 multimers in MDA-MB-231 and HCC4006 cells to a higher degree than in COS-7 and CHO cells and in a ligand-dependent manner. These results suggest that CXCR4-ß2AR heteromers are present in human cancer cells and that GPCR multimerization is significantly affected by the plasma membrane environment.


Asunto(s)
Neoplasias , Receptores Adrenérgicos beta 2 , Receptores CXCR4 , Transducción de Señal , Animales , Cricetinae , Humanos , Células CHO , Cricetulus , Proteínas de la Membrana/metabolismo , Neoplasias/metabolismo , Receptores CXCR4/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Multimerización de Proteína
3.
Nat Commun ; 14(1): 8105, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062020

RESUMEN

Structural and mechanistic studies on human odorant receptors (ORs), key in olfactory signaling, are challenging because of their low surface expression in heterologous cells. The recent structure of OR51E2 bound to propionate provided molecular insight into odorant recognition, but the lack of an inactive OR structure limited understanding of the activation mechanism of ORs upon odorant binding. Here, we determined the cryo-electron microscopy structures of consensus OR52 (OR52cs), a representative of the OR52 family, in the ligand-free (apo) and octanoate-bound states. The apo structure of OR52cs reveals a large opening between transmembrane helices (TMs) 5 and 6. A comparison between the apo and active structures of OR52cs demonstrates the inward and outward movements of the extracellular and intracellular segments of TM6, respectively. These results, combined with molecular dynamics simulations and signaling assays, shed light on the molecular mechanisms of odorant binding and activation of the OR52 family.


Asunto(s)
Odorantes , Receptores Odorantes , Humanos , Receptores Odorantes/metabolismo , Microscopía por Crioelectrón , Olfato , Simulación de Dinámica Molecular , Proteínas de Neoplasias/metabolismo
4.
PLoS One ; 18(10): e0287863, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37878624

RESUMEN

Autologous Stem Cell Transplant (ASCT) is increasingly used to treat hematological malignancies. A key requisite for ASCT is mobilization of hematopoietic stem cells into peripheral blood, where they are collected by apheresis and stored for later transplantation. However, success is often hindered by poor mobilization due to factors including prior treatments. The combination of G-CSF and GPC-100, a small molecule antagonist of CXCR4, showed potential in a multiple myeloma clinical trial for sufficient and rapid collection of CD34+ stem cells, compared to the historical results from the standards of care, G-CSF alone or G-CSF with plerixafor, also a CXCR4 antagonist. In the present study, we show that GPC-100 has high affinity towards the chemokine receptor CXCR4, and it potently inhibits ß-arrestin recruitment, calcium flux and cell migration mediated by its ligand CXCL12. Proximity Ligation Assay revealed that in native cell systems with endogenous receptor expression, CXCR4 co-localizes with the beta-2 adrenergic receptor (ß2AR). Co-treatment with CXCL12 and the ß2AR agonist epinephrine synergistically increases ß-arrestin recruitment to CXCR4 and calcium flux. This increase is blocked by the co-treatment with GPC-100 and propranolol, a non-selective beta-adrenergic blocker, indicating a functional synergy. In mice, GPC-100 mobilized more white blood cells into peripheral blood compared to plerixafor. GPC-100 induced mobilization was further amplified by propranolol pretreatment and was comparable to mobilization by G-CSF. Addition of propranolol to the G-CSF and GPC-100 combination resulted in greater stem cell mobilization than the G-CSF and plerixafor combination. Together, our studies suggest that the combination of GPC-100 and propranolol is a novel strategy for stem cell mobilization and support the current clinical trial in multiple myeloma registered as NCT05561751 at www.clinicaltrials.gov.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Compuestos Heterocíclicos , Mieloma Múltiple , Animales , Ratones , Movilización de Célula Madre Hematopoyética/métodos , Mieloma Múltiple/tratamiento farmacológico , Propranolol/uso terapéutico , Calcio/metabolismo , Compuestos Heterocíclicos/uso terapéutico , Células Madre Hematopoyéticas/metabolismo , Receptores CXCR4/metabolismo , Factor Estimulante de Colonias de Granulocitos/farmacología , beta-Arrestinas/metabolismo , Bencilaminas/metabolismo
5.
Cell Commun Signal ; 21(1): 257, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749552

RESUMEN

BACKGROUND: G protein-coupled receptor heteromerization is believed to exert dynamic regulatory impact on signal transduction. CXC chemokine receptor 4 (CXCR4) and its ligand CXCL12, both of which are overexpressed in many cancers, play a pivotal role in metastasis. Likewise, lysophosphatidic acid receptor 1 (LPA1) is implicated in cancer cell proliferation and migration. In our preliminary study, we identified LPA1 as a prospective CXCR4 interactor. In the present study, we investigated in detail the formation of the CXCR4-LPA1 heteromer and characterized the unique molecular features and function of this heteromer. METHODS: We employed bimolecular fluorescence complementation, bioluminescence resonance energy transfer, and proximity ligation assays to demonstrate heteromerization between CXCR4 and LPA1. To elucidate the distinctive molecular characteristics and functional implications of the CXCR4-LPA1 heteromer, we performed various assays, including cAMP, BRET for G protein activation, ß-arrestin recruitment, ligand binding, and transwell migration assays. RESULTS: We observed that CXCR4 forms heteromers with LPA1 in recombinant HEK293A cells and the human breast cancer cell line MDA-MB-231. Coexpression of LPA1 with CXCR4 reduced CXCL12-mediated cAMP inhibition, ERK activation, Gαi/o activation, and ß-arrestin recruitment, while CXCL12 binding to CXCR4 remained unaffected. In contrast, CXCR4 had no impact on LPA1-mediated signaling. The addition of lysophosphatidic acid (LPA) further hindered CXCL12-induced Gαi/o recruitment to CXCR4. LPA or alkyl-OMPT inhibited CXCL12-induced migration in various cancer cells that endogenously express both CXCR4 and LPA1. Conversely, CXCL12-induced calcium signaling and migration were increased in LPAR1 knockout cells, and LPA1-selective antagonists enhanced CXCL12-induced Gαi/o signaling and cell migration in the parental MDA-MB-231 cells but not in LPA1-deficient cells. Ultimately, complete inhibition of cell migration toward CXCL12 and alkyl-OMPT was only achieved in the presence of both CXCR4 and LPA1 antagonists. CONCLUSIONS: The presence and impact of CXCR4-LPA1 heteromers on CXCL12-induced signaling and cell migration have been evidenced across various cell lines. This discovery provides crucial insights into a valuable regulatory mechanism of CXCR4 through heteromerization. Moreover, our findings propose a therapeutic potential in combined CXCR4 and LPA1 inhibitors for cancer and inflammatory diseases associated with these receptors, simultaneously raising concerns about the use of LPA1 antagonists alone for such conditions. Video Abstract.


Asunto(s)
Señalización del Calcio , Quimiocina CXCL12 , Receptores CXCR4 , Receptores del Ácido Lisofosfatídico , Humanos , Movimiento Celular , Ligandos , Estudios Prospectivos
6.
Sci Rep ; 13(1): 1894, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732336

RESUMEN

C-X-C chemokine receptor 4 (CXCR4) is widely overexpressed in various types of cancer and is involved in several cancer phenotypes including tumor growth, survival, and metastasis. The roles of histamine and histamine receptor H1 (HRH1) in cancer pathogenesis remain controversial. Here, we show that HRH1 is widely expressed in various cancer cell lines and cancer tissues and that coexpression of CXCR4 and HRH1 is associated with poor prognosis in breast cancer. Using bimolecular fluorescence complementation and bioluminescence resonance energy transfer donor saturation assays, we demonstrate that CXCR4 and HRH1 can assemble into a heteromeric complex. Simultaneous activation of CXCR4 and HRH1 synergistically increases calcium flux in MDA-MB-231 cells that endogenously express CXCR4 and HRH1 but not in cells deficient in CXCR4 or HRH1. Costimulation of CXCR4 and HRH1 also significantly enhances CXCL12-induced MDA-MB-231 cell migration, while histamine alone does not induce cell migration. Synergistic effects on calcium flux and cell migration are inhibited by the Gαi inhibitor pertussis toxin and the Gαq inhibitor YM254890, suggesting that the Gαi and Gαq pathways are involved in the synergy. Enhanced calcium signaling and cell migration are also observed in NCI-H23 and HeLa cells, which coexpress CXCR4 and HRH1. Taken together, our findings demonstrate an interplay between CXCR4 and HRH1, and suggest the possibility of the CXCR4-HRH1 heteromer as a potential therapeutic target for anticancer therapy.


Asunto(s)
Neoplasias , Receptores CXCR4 , Humanos , Receptores CXCR4/metabolismo , Histamina/farmacología , Histamina/metabolismo , Señalización del Calcio , Células HeLa , Calcio/metabolismo , Quimiocina CXCL12/metabolismo , Movimiento Celular , Receptores Histamínicos H1/metabolismo , Línea Celular Tumoral , Neoplasias/genética
7.
J Immunol ; 202(2): 527-538, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30530591

RESUMEN

G2A is a GPCR abundantly expressed in immune cells. G2A-/- mice showed higher lethality, higher plasma cytokines, and an impaired bacterial clearance in response to a murine model of sepsis (cecal ligation and puncture), which were blocked by GdCl3, an inhibitor of Kupffer cells. Anti-IL-10 Ab reversed the impaired bacterial clearance in G2A-/- mice. Indomethacin effectively blocked both the increased i.p. IL-10 levels and the impaired bacterial clearance, indicating that disturbed PG system is the proximal cause of these phenomena. Stimulation with LPS/C5a induced an increase in Escherichia coli phagocytosis and intracellular cAMP levels in G2A+/+ peritoneal macrophages but not G2A-/- cells, which showed more PGE2/nitrite release and intracellular reactive oxygen species levels. Heterologous coexpression of G2A and adenosine receptor type 2b (A2bAR) induced a synergistic increase in cAMP signaling in a ligand-independent manner, with the evidence of physical interaction of G2A with A2bAR. BAY 60-6583, a specific agonist for A2bAR, increased intracellular cAMP levels in Kupffer cells from G2A+/+ but not from G2A-/- mice. Both G2A and A2bAR were required for antiseptic action of lysophosphatidylcholine. These results show inappropriate activation of G2A-/- Kupffer cells to septic insults due to an impaired cAMP signaling possibly by lack of interaction with A2bAR.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Infecciones por Escherichia coli/inmunología , Escherichia coli/fisiología , Macrófagos del Hígado/inmunología , Macrófagos Peritoneales/fisiología , Receptor de Adenosina A2B/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sepsis/metabolismo , Animales , Anticuerpos Bloqueadores , Proteínas de Ciclo Celular/genética , Células Cultivadas , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Humanos , Interleucina-10/inmunología , Interleucina-10/metabolismo , Macrófagos Peritoneales/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitosis , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Receptor Cross-Talk , Receptor de Adenosina A2B/genética , Receptores Acoplados a Proteínas G/genética , Sepsis/genética , Transducción de Señal
8.
J Microbiol Biotechnol ; 27(2): 357-364, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-27780958

RESUMEN

In this study, we aimed to generate a series of versatile tagging plasmids that can be used in diverse molecular biological studies of the fungal pathogen Cryptococcus neoformans. We constructed 12 plasmids that can be used to tag a protein of interest with a GFP, mCherry, 4×FLAG, or 6×HA, along with nourseothricin-, neomycin-, or hygromycin-resistant selection markers. Using this tagging plasmid set, we explored the adenylyl cyclase complex (ACC), consisting of adenylyl cyclase (Cac1) and its associated protein Aca1, in the cAMP-signaling pathway, which is critical for the pathogenicity of C. neoformans. We found that Cac1-mCherry and Aca1-GFP were mainly colocalized as punctate forms in the cell membrane and nonnuclear cellular organelles. We also demonstrated that Cac1 and Aca1 interacted in vivo by coimmunoprecipitation, using Cac1-6×HA and Aca1-4×FLAG tagging strains. Bimolecular fluorescence complementation further confirmed the in vivo interaction of Cac1 and Aca1 in live cells. Finally, protein pull-down experiments using aca1Δ::ACA1-GFP and aca1Δ::ACA1- GFP cac1Δ strains and comparative mass spectrometry analysis identified Cac1 and a number of other novel ACC-interacting proteins. Thus, this versatile tagging plasmid system will facilitate diverse mechanistic studies in C. neoformans and further our understanding of its biology.


Asunto(s)
Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Cryptococcus neoformans/genética , Plásmidos , Secuencia de Aminoácidos , Cinamatos/farmacología , Cryptococcus neoformans/fisiología , AMP Cíclico/química , AMP Cíclico/genética , AMP Cíclico/fisiología , Genes Fúngicos , Ingeniería Genética/métodos , Higromicina B/análogos & derivados , Higromicina B/farmacología , Espectrometría de Masas , Transducción de Señal
9.
Free Radic Biol Med ; 101: 424-433, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27838435

RESUMEN

Reactive oxygen species (ROS)-mediated DNA adducts as well as DNA strand breaks are highly mutagenic leading to genomic instability and tumorigenesis. DNA damage repair pathways and oxidative stress response signaling have been proposed to be highly associated, but the underlying interaction remains unknown. In this study, we employed mutant strains lacking Rad51, the homolog of E. coli RecA recombinase, and Yap1 or Skn7, two major transcription factors responsive to ROS, to examine genetic interactions between double-strand break (DSB) repair proteins and cellular redox regulators in budding yeast Saccharomyces cerevisiae. Abnormal expression of YAP1 or SKN7 aggravated the mutation rate of rad51 mutants and their sensitivity to DSB- or ROS-generating reagents. Rad51 deficiency exacerbated genome instability in the presence of increased levels of ROS, and the accumulation of DSB lesions resulted in elevated intracellular ROS levels. Our findings suggest that evident crosstalk between DSB repair pathways and ROS signaling proteins contributes to cell survival and maintenance of genome integrity in response to genotoxic stress.


Asunto(s)
Reparación del ADN , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Recombinasa Rad51/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Supervivencia Celular , Roturas del ADN de Doble Cadena/efectos de los fármacos , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Recombinación Homóloga , Peróxido de Hidrógeno/farmacología , Tasa de Mutación , Estrés Oxidativo , Paraquat/farmacología , Recombinasa Rad51/deficiencia , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
10.
Biochem Biophys Res Commun ; 467(4): 657-63, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26498530

RESUMEN

Ugp1, UDP-glucose pyrophosphorylase, plays an important role in carbohydrate metabolism because it provides UDP-glucose that is a pivotal metabolite in several metabolic pathways in Saccharomyces cerevisiae. In this study, we show that a considerable reduction of glycogen and trehalose content in ugp1 knockdown cells is rescued by complementing the expression of Ugp1, indicating that Ugp1 is required for the production of storage carbohydrates. Because of the specific function of trehalose as a stress protectant, Ugp1 expression contributed to oxidative stress response and long-term cell survival during stationary phase. Furthermore, the modulation of Ugp1 level readjusted glycogen and trehalose accumulation in the protein kinase A (PKA)-related gene mutants. The PKA-dependent phenotypes of oxidative stress resistance and long-term cell survival were also alleviated via adjustment of Ugp1 level. Collectively, our data suggest that the regulation of UPG1 influences several PKA-dependent processes by adjusting the levels of various carbohydrates.


Asunto(s)
Estrés Oxidativo , Saccharomyces cerevisiae/enzimología , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo , Supervivencia Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Glucógeno/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Trehalosa/metabolismo
11.
FEBS Lett ; 589(18): 2409-16, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26188548

RESUMEN

Ugp1, a UDP-glucose pyrophosphorylase, is essential for various cellular activities in Saccharomyces cerevisiae because its product, UDP-glucose, is a sole glucosyl donor in several metabolic pathways. Here, we report that Msn2/4 play a crucial role in the regulation of UGP1 expression. Msn2/4 bound to three stress response elements in the UGP1 promoter in a protein kinase A (PKA)-dependent manner. Several stresses induced UGP1 transcription, suggesting that the regulation of UGP1 mediated by Msn2/4 is involved in general stress response. Furthermore, the phosphate response (PHO) pathway also controlled Msn2/4-dependent regulation of UGP1, providing a novel link between the PKA and PHO pathways. Our data suggest that signals of the PKA, PHO and stress response pathways regulate UGP1 expression via Msn2/4 in S. cerevisiae.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación Fúngica de la Expresión Génica , Fosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Glucosa/metabolismo , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Elementos de Respuesta , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Factores de Transcripción/metabolismo , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética
12.
Nucleic Acids Res ; 42(13): 8486-99, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24981510

RESUMEN

In Saccharomyces cerevisiae, the stability of highly repetitive rDNA array is maintained through transcriptional silencing. Recently, a ß-1,3-glucanosyltransferase Gas1 has been shown to play a significant role in the regulation of transcriptional silencing in S. cerevisiae. Here, we show that the gas1Δ mutation increases rDNA silencing in a Sir2-dependent manner. Remarkably, the gas1Δ mutation induces nuclear localization of Msn2/4 and stimulates the expression of PNC1, a gene encoding a nicotinamidase that functions as a Sir2 activator. The lack of enzymatic activity of Gas1 or treatment with a cell wall-damaging agent, Congo red, exhibits effects similar to those of the gas1Δ mutation. Furthermore, the loss of Gas1 or Congo red treatment lowers the cAMP-dependent protein kinase (PKA) activity in a cell wall integrity MAP kinase Slt2-dependent manner. Collectively, our results suggest that the dysfunction of Gas1 plays a positive role in the maintenance of rDNA integrity by decreasing PKA activity and inducing the accumulation of Msn2/4 in the nucleus. It seems that nuclear-localized Msn2/4 stimulate the expression of Pnc1, thereby enhancing the association of Sir2 with rDNA and promoting rDNA stability.


Asunto(s)
ADN Ribosómico , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Glucano Endo-1,3-beta-D-Glucosidasa/fisiología , Glicoproteínas de Membrana/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Rojo Congo , Proteínas de Unión al ADN/metabolismo , Eliminación de Gen , Glucano Endo-1,3-beta-D-Glucosidasa/genética , Glucano Endo-1,3-beta-D-Glucosidasa/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Nicotinamidasa/biosíntesis , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
13.
Anal Biochem ; 449: 32-41, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24361713

RESUMEN

G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors and are involved in a variety of pathological conditions including cancer and cardiovascular, metabolic, neurological, and autoimmune diseases. GPCRs are being intensively investigated as targets for therapeutic intervention, and the ß-arrestin recruitment assay has become a popular tool for analyzing GPCR activation. Here, we report a high-throughput method for cloning GPCR cDNAs into adenoviral bimolecular fluorescence complementation (BiFC) vectors and performing the ß-arrestin BiFC assay in cells transduced with recombinant adenoviruses. An analysis of the activation of somatostatin receptor 2 (SSTR2) with the adenovirus-based ß-arrestin BiFC assay showed that the assay is suitable for quantifying SSTR2 activation in response to specific agonists or antagonists. Furthermore, the adenovirus-based ß-arrestin BiFC assay was able to detect the activation of a broad range of GPCRs. Collectively, our data indicate that the adenovirus-based ß-arrestin BiFC assay can serve as a simple and universal platform for studying GPCR activation and thus will be useful for high-throughput screening of drugs that target GPCRs.


Asunto(s)
Adenoviridae/genética , Arrestinas/metabolismo , Técnicas Biosensibles/métodos , Receptores Acoplados a Proteínas G/metabolismo , Clonación Molecular , ADN Complementario/genética , Fluorescencia , Células HEK293 , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Receptores Acoplados a Proteínas G/genética , beta-Arrestinas
14.
J Biotechnol ; 162(2-3): 246-52, 2012 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-23063969

RESUMEN

The need for efficient high-throughput gene delivery system for mammalian cells is rapidly increasing with the growing request for functional genomics studies and drug discoveries in various physiologically relevant systems. However, plasmid-based gene delivery has limitations in transfection efficiency and available cell types. Viral vectors have great advantages over plasmid-based vectors, but construction of recombinant viruses remains to be a big hurdle for high-throughput applications. Here we demonstrate a rapid and simple high-throughput system for constructing recombinant adenoviruses which have been used as efficient gene delivery tools in mammalian systems in vitro and in vivo. By combining Gateway-based site-specific recombination with Terminal protein-coupled adenovirus vector, the adenovirus high-throughput system (AdHTS) generates multiple recombinant adenoviruses in 96-well plates simultaneously without the need for additional cloning or recombination in bacteria or mammalian cells. The AdHTS allows rapid and robust cloning and expression of genes in mammalian cells by removing shuttle vector construction, bacterial transformation, or selection and by minimizing effort in plaque isolation. By shortening the time required to convert whole cDNA library into desired viral vector constructs, the AdHTS would greatly facilitate functional genomics and proteomics studies in various mammalian systems.


Asunto(s)
Adenoviridae/genética , Clonación Molecular/métodos , Vectores Genéticos , Ensayos Analíticos de Alto Rendimiento/métodos , Recombinación Genética , Biotecnología/métodos , ADN Viral/genética , Células HEK293 , Humanos
15.
Protein Cell ; 2(6): 487-96, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21748599

RESUMEN

An increasing body of evidence shows that the lipid droplet, a neutral lipid storage organelle, plays a role in lipid metabolism and energy homeostasis through its interaction with mitochondria. However, the cellular functions and molecular mechanisms of the interaction remain ambiguous. Here we present data from transmission electron microscopy, fluorescence imaging, and reconstitution assays, demonstrating that lipid droplets physically contact mitochondria in vivo and in vitro. Using a bimolecular fluorescence complementation assay in Saccharomyces cerevisiae, we generated an interactomic map of protein-protein contacts of lipid droplets with mitochondria and peroxisomes. The lipid droplet proteins Erg6 and Pet10 were found to be involved in 75% of the interactions detected. Interestingly, interactions between 3 pairs of lipid metabolic enzymes were detected. Collectively, these data demonstrate that lipid droplets make physical contacts with mitochondria and peroxisomes, and reveal specific molecular interactions that suggest active participation of lipid droplets in lipid metabolism in yeast.


Asunto(s)
Metabolismo de los Lípidos , Mitocondrias/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas Oncogénicas/metabolismo , Mapeo de Interacción de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Prueba de Complementación Genética , Lípidos , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Músculo Esquelético/citología , Proteínas Oncogénicas/genética , Peroxisomas/metabolismo , Plásmidos , Unión Proteica , Mapeo de Interacción de Proteínas/métodos , Ratas , Proteínas Recombinantes de Fusión/genética , Saccharomyces cerevisiae , Factores de Transcripción/genética , Transformación Genética
16.
Biochem Biophys Res Commun ; 407(1): 175-80, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21371429

RESUMEN

Human PTEN (phosphatase and tensin homolog deleted on chromosome 10; a phosphatidylinositol 3-phosphatase) expressed in Saccharomyces cerevisiae was oxidized in a time- and H(2)O(2)-concentration-dependent manner. Oxidized hPTEN was reduced by cellular reductants as in human cells. The reduction rate of oxidized hPTEN was monitored in S. cerevisiae mutants in which the genes involved in redox homeostasis had been disrupted. Reduction of hPTEN was delayed in each of S. cerevisiae grx5Δ and ycp4Δ mutants. Expression of Grx5 and Ycp4 in each of the mutants rescued the reduction rate of oxidized hPTEN. Furthermore, an in vitro assay revealed that the human Grx5/GSH system efficiently catalyzed the reduction of oxidized hPTEN. These results suggest that the reduction of oxidized hPTEN is regulated by Grx5 and Ycp4.


Asunto(s)
Flavodoxina/metabolismo , Glutarredoxinas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Glutarredoxinas/genética , Humanos , Peróxido de Hidrógeno/metabolismo , Datos de Secuencia Molecular , Oxidación-Reducción , Fosfohidrolasa PTEN/genética , Saccharomyces cerevisiae/genética
17.
Mol Microbiol ; 79(3): 633-46, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21255108

RESUMEN

Yak1 is a member of an evolutionarily conserved family of Ser/Thr protein kinases known as dual-specificity Tyr phosphorylation-regulated kinases (DYRKs). Yak1 was originally identified as a growth antagonist, which functions downstream of Ras/PKA signalling pathway. It has been known that Yak1 is phosphorylated by PKA in vitro and is translocated to the nucleus upon nutrient deprivation. However, the regulatory mechanisms for Yak1 activity and localization are largely unknown. In the present study, we investigated the role of PKA and Bmh1, a yeast 14-3-3 protein, in regulation of Yak1. We demonstrate that PKA-dependent phosphorylation of Yak1 on Ser295 and two minor sites inhibits nuclear localization of Yak1. We also show that intramolecular autophosphorylation on at least four Ser/Thr residues in the non-catalytic N-terminal domain is required for full kinase activity of Yak1. The most potent autophosphorylation site, Thr335, plays an essential role for Bmh1 binding in collaboration with a yet unidentified second binding site in the N-terminal domain. Bmh1 binding decreases the catalytic activity of Yak1 without affecting its subcellular localization. Since the binding of 14-3-3 proteins to Yak1 coincides with PKA activity, such regulatory mechanisms might allow cytoplasmic retention of an inactive form of Yak1 under high glucose conditions.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas 14-3-3/metabolismo , Núcleo Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/química , Modelos Biológicos , Fosforilación , Fosfoserina/metabolismo , Fosfotreonina , Unión Proteica , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Estructura Terciaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/química
18.
FEBS Lett ; 584(16): 3550-6, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20637195

RESUMEN

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expressed in Saccharomyces cerevisiae was reversibly oxidized by hydrogen peroxide and reduced by cellular reductants. Reduction of hPTEN was delayed in each of S. cerevisiae gsh1Delta and gsh2Delta mutants. Expression of gamma-glutamylcysteine synthetase Gsh1 in the gsh1Delta mutant rescued regeneration rate of hPTEN. Oxidized hPTEN was reduced by glutathione in a concentration- and time-dependent manner. Glutathionylated PTEN was detected. Incubation of 293T cells with BSO and knockdown expression of GCLc in HeLa cells by siRNA resulted in the delay of reduction of oxidized PTEN. Also, in HeLa cells transfected with GCLc siRNA, stimulation with epidermal growth factor resulted in the increase of oxidized PTEN and phosphorylation of Akt. These results suggest that the reduction of oxidized hPTEN is mediated by glutathione.


Asunto(s)
Glutatión/metabolismo , Fosfohidrolasa PTEN/metabolismo , Secuencia de Bases , Línea Celular , Cartilla de ADN/genética , Glutamato-Cisteína Ligasa/antagonistas & inhibidores , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Glutatión Sintasa/genética , Glutatión Sintasa/metabolismo , Células HeLa , Humanos , Técnicas In Vitro , Modelos Biológicos , Mutación , Oxidación-Reducción , Fosfohidrolasa PTEN/genética , ARN Interferente Pequeño/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Yeast ; 25(4): 301-11, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18350525

RESUMEN

In Saccharomyces cerevisiae, one-step PCR-mediated modification of chromosomal genes allows fast and efficient tagging of yeast proteins with various epitopes at the C- or N-terminus. For many purposes, C-terminal tagging is advantageous in that the expression pattern of epitope tag is comparable to that of the authentic protein and the possibility for the tag to affect normal folding of polypeptide chain during translation is minimized. As experiments are getting complicated, it is often necessary to construct several fusion proteins tagged with various kinds of epitopes. Here, we describe development of a series of plasmids that allow efficient and economical switching of C-terminally tagged epitopes, using just one set of universal oligonucleotide primers. Containing a variety of epitopes (GFP, TAP, GST, Myc, HA and FLAG tag) and Kluyveromyces lactis URA3 gene as a selectable marker, the plasmids can be used to replace any MX6 module-based C-terminal epitope tag with one of the six epitopes. Furthermore, the plasmids also allow additional C-terminal epitope tagging of proteins in yeast cells that already carry MX6 module-based gene deletion or C-terminal epitope tag.


Asunto(s)
Epítopos/genética , Vectores Genéticos , Saccharomyces cerevisiae/genética , Cromosomas Fúngicos/genética , Epítopos/metabolismo , Marcación de Gen , Plásmidos , Reacción en Cadena de la Polimerasa , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Microbiology (Reading) ; 148(Pt 11): 3705-3713, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12427960

RESUMEN

Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is suspected to be one of the anti-oxidant enzymes and virulence determinants active in some pathogenic micro-organisms. To elucidate the role of Cu/ZnSOD in the major human fungal pathogen Candida albicans, its gene, designated SOD1, was disrupted by the URA-blaster technique. The resulting sod1/sod1 mutant showed delayed hyphal growth on Spider medium but could still form hyphae on other solid media or in liquid media, particularly in response to serum. Moreover, the sod1/sod1 mutant was more sensitive to menadione, a redox-cycling agent, than the isogenic wild-type strain, although it still showed an adaptive oxidative stress response. Furthermore, the sod1/sod1 mutant cells exhibited slow growth in minimal medium when compared to the wild-type cells, but their growth was restored by the addition of lysine to the medium. Interestingly, C. albicans cells lacking Cu/ZnSOD showed increased susceptibility to macrophage attack and had attenuated virulence in mice. Thus, these results suggest that Cu/ZnSOD is required for the protection of C. albicans against oxidative stresses and for the full virulence of the organism to be expressed.


Asunto(s)
Candida albicans/enzimología , Sustancias Protectoras/metabolismo , Superóxido Dismutasa/metabolismo , Adaptación Biológica , Animales , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Candida albicans/patogenicidad , Candidiasis/microbiología , Modelos Animales de Enfermedad , Humanos , Lisina/metabolismo , Macrófagos/enzimología , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Mutación , Estrés Oxidativo/fisiología , Superóxido Dismutasa/genética , Superóxido Dismutasa/farmacología , Superóxido Dismutasa-1 , Virulencia , Vitamina K 3/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA