Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Methods Mol Biol ; 2788: 337-354, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656524

RESUMEN

Modern genome editing tools particularly CRISPR/Cas9 have revolutionized plant genome manipulation for engineering resilience against changing climatic conditions, disease infestation, as well as functional genomic studies. CRISPR-mediated genome editing allows for editing at a single as well as multiple locations in the genome simultaneously, making it an effective tool for polyploid species too. However, still, its applications are limited to the model crops only. Extending it to crop plants will help improve field crops against the changing climates more rapidly and precisely. Here we describe the protocol for editing the genome of a field crop Brassica juncea (mustard), an allotetraploid and important oilseed crop of the Indo-Pak Subcontinent region. This protocol is based on the Agrobacterium-mediated transformation for the delivery of CRISPR components into the plant genome using cotyledon as explants. We elaborate on steps for recovering genome-edited knockouts, for validation of the edits, as well as recovering the transgene-free edited plants through a commonly used segregating approach.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma de Planta , Planta de la Mostaza , Plantas Modificadas Genéticamente , Edición Génica/métodos , Planta de la Mostaza/genética , Plantas Modificadas Genéticamente/genética , Agrobacterium/genética , Transformación Genética
2.
CRISPR J ; 4(3): 416-426, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34152214

RESUMEN

Discoveries in model plants grown under optimal conditions can provide important directions for crop improvement. However, it is important to verify whether results can be translated to crop plants grown in the field. In this study, we sought to study the role of MYB28 in the regulation of aliphatic glucosinolate (A-GSL) biosynthesis and associated sulfur metabolism in field-grown Brassica oleracea with the use of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 gene-editing technology. We describe the first myb28 knockout mutant in B. oleracea, and the first CRISPR field trial in the United Kingdom approved and regulated by the UK Department for Environment, Food & Rural Affairs after the reclassification of gene-edited crops as genetically modified organisms by the European Court of Justice on July 25, 2018. We report that knocking out myb28 results in downregulation of A-GSL biosynthesis genes and reduction in accumulation of the methionine-derived glucosinolate, glucoraphanin, in leaves and florets of field-grown myb28 mutant broccoli plants, whereas accumulation of sulfate, S-methyl cysteine sulfoxide, and indole glucosinolate in leaf and floret tissues remained unchanged. These results demonstrate the potential of gene-editing approaches to translate discoveries in fundamental biological processes for improved crop performance.


Asunto(s)
Brassica/genética , Brassica/metabolismo , Sistemas CRISPR-Cas , Edición Génica/métodos , Glucosinolatos/biosíntesis , Glucosinolatos/genética , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Proteínas de Arabidopsis , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Expresión Génica , Oximas , Plantas Modificadas Genéticamente , Sulfóxidos/metabolismo , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA