Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
2.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38649187

RESUMEN

All cancer cells reprogram metabolism to support aberrant growth. Here, we report that cancer cells employ and depend on imbalanced and dynamic heme metabolic pathways, to accumulate heme intermediates, that is, porphyrins. We coined this essential metabolic rewiring "porphyrin overdrive" and determined that it is cancer-essential and cancer-specific. Among the major drivers are genes encoding mid-step enzymes governing the production of heme intermediates. CRISPR/Cas9 editing to engineer leukemia cell lines with impaired heme biosynthetic steps confirmed our whole-genome data analyses that porphyrin overdrive is linked to oncogenic states and cellular differentiation. Although porphyrin overdrive is absent in differentiated cells or somatic stem cells, it is present in patient-derived tumor progenitor cells, demonstrated by single-cell RNAseq, and in early embryogenesis. In conclusion, we identified a dependence of cancer cells on non-homeostatic heme metabolism, and we targeted this cancer metabolic vulnerability with a novel "bait-and-kill" strategy to eradicate malignant cells.


Asunto(s)
Sistemas CRISPR-Cas , Hemo , Porfirinas , Humanos , Hemo/metabolismo , Porfirinas/metabolismo , Porfirinas/farmacología , Línea Celular Tumoral , Neoplasias/metabolismo , Neoplasias/genética , Redes y Vías Metabólicas/genética , Diferenciación Celular/genética , Edición Génica , Animales , Ratones
3.
J Biol Chem ; 291(22): 11887-98, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27026703

RESUMEN

Frataxin is a mitochondrial iron-binding protein involved in iron storage, detoxification, and delivery for iron sulfur-cluster assembly and heme biosynthesis. The ability of frataxin from different organisms to populate multiple oligomeric states in the presence of metal ions, e.g. Fe(2+) and Co(2+), led to the suggestion that different oligomers contribute to the functions of frataxin. Here we report on the complex between yeast frataxin and ferrochelatase, the terminal enzyme of heme biosynthesis. Protein-protein docking and cross-linking in combination with mass spectroscopic analysis and single-particle reconstruction from negatively stained electron microscopic images were used to verify the Yfh1-ferrochelatase interactions. The model of the complex indicates that at the 2:1 Fe(2+)-to-protein ratio, when Yfh1 populates a trimeric state, there are two interaction interfaces between frataxin and the ferrochelatase dimer. Each interaction site involves one ferrochelatase monomer and one frataxin trimer, with conserved polar and charged amino acids of the two proteins positioned at hydrogen-bonding distances from each other. One of the subunits of the Yfh1 trimer interacts extensively with one subunit of the ferrochelatase dimer, contributing to the stability of the complex, whereas another trimer subunit is positioned for Fe(2+) delivery. Single-turnover stopped-flow kinetics experiments demonstrate that increased rates of heme production result from monomers, dimers, and trimers, indicating that these forms are most efficient in delivering Fe(2+) to ferrochelatase and sustaining porphyrin metalation. Furthermore, they support the proposal that frataxin-mediated delivery of this potentially toxic substrate overcomes formation of reactive oxygen species.


Asunto(s)
Ferroquelatasa/química , Ferroquelatasa/metabolismo , Hemo/biosíntesis , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/metabolismo , Hierro/metabolismo , Saccharomyces cerevisiae/metabolismo , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae/crecimiento & desarrollo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Frataxina
4.
PLoS One ; 9(4): e93078, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24718052

RESUMEN

5-Aminolevulinate synthase (ALAS; EC 2.3.1.37) catalyzes the first committed step of heme biosynthesis in animals. The erythroid-specific ALAS isozyme (ALAS2) is negatively regulated by heme at the level of mitochondrial import and, in its mature form, certain mutations of the murine ALAS2 active site loop result in increased production of protoporphyrin IX (PPIX), the precursor for heme. Importantly, generation of PPIX is a crucial component in the widely used photodynamic therapies (PDT) of cancer and other dysplasias. ALAS2 variants that cause high levels of PPIX accumulation provide a new means of targeted, and potentially enhanced, photosensitization. In order to assess the prospective utility of ALAS2 variants in PPIX production for PDT, K562 human erythroleukemia cells and HeLa human cervical carcinoma cells were transfected with expression plasmids for ALAS2 variants with greater enzymatic activity than the wild-type enzyme. The levels of accumulated PPIX in ALAS2-expressing cells were analyzed using flow cytometry with fluorescence detection. Further, cells expressing ALAS2 variants were subjected to white light treatments (21-22 kLux) for 10 minutes after which cell viability was determined. Transfection of HeLa cells with expression plasmids for murine ALAS2 variants, specifically for those with mutated mitochondrial presequences and a mutation in the active site loop, caused significant cellular accumulation of PPIX, particularly in the membrane. Light treatments revealed that ALAS2 expression results in an increase in cell death in comparison to aminolevulinic acid (ALA) treatment producing a similar amount of PPIX. The delivery of stable and highly active ALAS2 variants has the potential to expand and improve upon current PDT regimes.


Asunto(s)
5-Aminolevulinato Sintetasa/metabolismo , Luz , Proteínas Mutantes/metabolismo , Protoporfirinas/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Muerte Celular/efectos de la radiación , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/efectos de la radiación , Medios de Cultivo , Deferoxamina/farmacología , Glicina/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Células K562 , Ratones , Paclitaxel/farmacología , Plásmidos/metabolismo , Transfección
5.
J Porphyr Phthalocyanines ; 15(5-6): 350-356, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21852895

RESUMEN

Ferrochelatase (also known as PPIX ferrochelatase; Enzyme Commission number 4.9.9.1.1) catalyzes the insertion of ferrous iron into PPIX to form heme. This reaction unites the biochemically synchronized pathways of porphyrin synthesis and iron transport in nearly all living organisms. The ferrochelatases are an evolutionarily diverse family of enzymes with no more than six active site residues known to be perfectly conserved. The availability of over thirty different crystal structures, including many with bound metal ions or porphyrins, has added tremendously to our understanding of ferrochelatase structure and function. It is generally believed that ferrous iron is directly channeled to ferrochelatase in vivo, but the identity of the suspected chaperone remains uncertain despite much recent progress in this area. Identification of a conserved metal ion binding site at the base of the active site cleft may be an important clue as to how ferrochelatases acquire iron, and catalyze desolvation during transport to the catalytic site to complete heme synthesis.

6.
Arch Biochem Biophys ; 511(1-2): 107-17, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21600186

RESUMEN

5-Aminolevulinate synthase (ALAS) and 8-amino-7-oxononanoate synthase (AONS) are homodimeric members of the α-oxoamine synthase family of pyridoxal 5'-phosphate (PLP)-dependent enzymes. Previously, linking two ALAS subunits into a single polypeptide chain dimer yielded an enzyme (ALAS/ALAS) with a significantly greater turnover number than that of wild-type ALAS. To examine the contribution of each active site to the enzymatic activity of ALAS/ALAS, the catalytic lysine, which also covalently binds the PLP cofactor, was substituted with alanine in one of the active sites. Albeit the chemical rate for the pre-steady-state burst of ALA formation was identical in both active sites of ALAS/ALAS, the k(cat) values of the variants differed significantly (4.4±0.2 vs. 21.6±0.7 min(-1)) depending on which of the two active sites harbored the mutation. We propose that the functional asymmetry for the active sites of ALAS/ALAS stems from linking the enzyme subunits and the introduced intermolecular strain alters the protein conformational flexibility and rates of product release. Moreover, active site functional asymmetry extends to chimeric ALAS/AONS proteins, which while having a different oligomeric state, exhibit different rates of product release from the two ALAS and two AONS active sites due to the created intermolecular strain.


Asunto(s)
5-Aminolevulinato Sintetasa/química , Aciltransferasas/química , 5-Aminolevulinato Sintetasa/genética , 5-Aminolevulinato Sintetasa/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Sustitución de Aminoácidos , Animales , Dominio Catalítico/genética , Dimerización , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Ratones , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Espectrometría de Fluorescencia , Espectrofotometría
7.
Arch Biochem Biophys ; 437(2): 128-37, 2005 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-15850552

RESUMEN

5-aminolevulinic acid (ALA) is the committed biological precursor to porphyrins. At supraphysiological concentrations ALA can dimerize to form 3,6-dihydropyrazine-2,5-dipropanoic acid (DHPY), which transfers electrons to XTT in a reaction that does not require metal ions and is specifically inhibited by superoxide dismutase. The formation of DHPY from ALA follows dimerization kinetics with a pK of 7.8+/-0.1. At pH 11.2, DHPY is relatively stable, but when the pH is dropped to 6.0 rapid conversion to 2,5-(beta-carboxyethyl)pyrazine occurs via an intermediate with an absorption maximum of 370 nm. Formation of this intermediate is pH-dependent with a pK of 6.0+/-0.1. These data indicate that ALA dimerizes to produce superoxide from a protonated form of DHPY. The significance of these results with respect to the concentrations of ALA used in photodynamic therapy, and the increased incidence of liver cancer in acute intermittent porphyria, is discussed.


Asunto(s)
Ácido Aminolevulínico/química , Protones , Pirazinas/química , Soluciones/química , Superóxidos/química , Dimerización , Concentración de Iones de Hidrógeno , Cinética , Estructura Molecular , Análisis Espectral , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA