Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Haematologica ; 93(11): 1627-34, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18768533

RESUMEN

BACKGROUND: Mutations in the ribosomal protein S19 gene (RPS19) have been found in 25% of patients with Diamond-Blackfan anemia, a rare syndrome of congenital bone marrow failure characterized by erythroblastopenia and various malformations. Mechanistic understanding of the role of RPS19 in normal erythropoiesis and in the Diamond-Blackfan anemia defect is still poor. However, defective ribosome biogenesis and, in particular, impaired 18S ribosomal RNA maturation have been documented in association with various identified RPS19 mutations. Recently, new genes, all encoding ribosomal proteins, have been found to be mutated in Diamond-Blackfan anemia, adding further support to the concept that ribosome biogenesis plays an important role in regulating erythropoiesis. We previously showed variability in the levels of expression and subcellular localization of a subset of RPS19 mutant proteins. DESIGN AND METHODS: To define the mechanistic basis for this variability better, we studied a large number of mutant proteins and characterized both RPS19 expression level using a specific antibody against RPS19 and RPS19 subcellular localization after transfection of Cos-7 cells with various green fluorescent protein-RPS19 mutants. To investigate the role of the proteasome in RPS19 degradation, we examined the effect of various proteasome inhibitors, namely lactacystin, MG132, and bortezomib on RPS19 expression and subcellular localization RESULTS: We found two distinct classes of RPS19 protein defects in Diamond-Blackfan anemia based on the stability of the mutant proteins: (i) slightly decreased to normal levels of expression and normal nucleolar localization and (ii) markedly deficient expression and failure to localize to the nucleolus. All the proteasome inhibitors tested were able to restore the expression levels and normal subcellular localization of several unstable mutant proteins. CONCLUSIONS: Our findings demonstrate an important role for the proteasomal degradation pathway in regulating the expression levels and nucleolar localization of certain mutant RPS19 proteins in Diamond-Blackfan anemia.


Asunto(s)
Anemia de Diamond-Blackfan/genética , Inhibidores de Proteasoma , Proteínas Ribosómicas/genética , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacología , Animales , Células COS , Niño , Preescolar , Chlorocebus aethiops , Clonación Molecular , Codón/genética , Femenino , Humanos , Lactante , Masculino , Mutación , Proteínas Recombinantes de Fusión/metabolismo
2.
J Mol Evol ; 65(4): 392-402, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17909695

RESUMEN

The understanding of mitochondrial functioning is of prime importance since it combines the production of energy as adenosine triphosphate (ATP) with an efficient chain of redox reactions, but also with the unavoidable production of reactive oxygen species (ROS) involved in aging. Mitochondrial respiration may be uncoupled from ATP synthesis by a proton leak induced by the thermogenic uncoupling protein 1 (UCP1). Mild uncoupling activity, as proposed for UCP2, UCP3, and avian UCP could theoretically control ROS production, but the nature of their transport activities is far from being definitively understood. The recent discovery of a UCP1 gene in fish has balanced the evolutionary view of uncoupling protein history. The thermogenic proton transport of mammalian UCP1 seems now to be a late evolutionary characteristic and the hypothesis that ancestral UCPs may carry other substrates is tempting. Using in silico genome analyses among taxa and a biochemical approach, we present a detailed phylogenetic analysis of UCPs and investigate whether avian UCP is a good candidate for pleiotropic mitochondrial activities, knowing that only one UCP has been characterized in the avian genome, unlike all other vertebrates. We show, here, that the avian class seems to be the only vertebrate lineage lacking two of the UCP1/2/3 homologues present in fish and mammals. We suggest, based on phylogenetic evidence and synteny of the UCP genes, that birds have lost UCP1 and UCP2. The phylogeny also supports the history of two rounds of duplication during vertebrate evolution. The avian uncoupling protein then represents a unique opportunity to explore how UCPs' activities are controlled, but also to understand why birds exhibit such a particular relationship between high metabolism and slow rate of aging.


Asunto(s)
Evolución Molecular , Canales Iónicos/genética , Proteínas Mitocondriales/genética , Secuencia de Aminoácidos , Animales , Aves , Canales Iónicos/química , Proteínas Mitocondriales/química , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Proteína Desacopladora 1
3.
Biochem J ; 402(2): 271-8, 2007 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17073824

RESUMEN

The mitochondrion is a major organelle contributing to energy metabolism but also a main site of ROS (reactive oxygen species) production. LPS (lipopolysaccharide)-induced ROS signalling is a critical event in macrophage activation. In the present paper we report that part of LPS-mediated ROS signalling comes from mitochondria inside a signal amplification loop that enhances MAPK (mitogen-activated protein kinase) activation. More precisely, we have identified the inner mitochondrial membrane UCP2 (uncoupling protein 2) as a physiological brake on ROS signalling. Stimulation of murine bone marrow-derived macrophages by LPS quickly down-regulated UCP2 through the JNK (c-Jun N-terminal kinase) and p38 pathways. UCP2 down-regulation was shown to be necessary to increase mitochondrial ROS production in order to potentiate MAPK activation. Consistent with this, UCP2-deficient macrophages exhibit an enhanced inflammatory state characterized by increased nitric oxide production and elevated migration ability. Additionally, we found that the absence of UCP2 renders macrophages more resistant to nitric oxide-induced apoptosis.


Asunto(s)
Canales Iónicos/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Animales , Apoptosis , Células Cultivadas , Regulación hacia Abajo , Activación Enzimática/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Canales Iónicos/deficiencia , Canales Iónicos/genética , Macrófagos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Proteína Desacopladora 2
4.
Cytokine ; 35(3-4): 135-42, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16971137

RESUMEN

The uncoupling protein 2 (UCP2) is located in the inner mitochondrial membrane and downregulates the production of reactive oxygen species (ROS). Recent data suggested a role for UCP2 in the immune response. We analyzed further this hypothesis during acute Listeria monocytogenes infection in mice. Death of infected Ucp2(-/-) mice was delayed in comparison with Ucp2(+/+), suggesting a role of UCP2 in the early step of the immune response. In vitro, the higher resistance of Ucp2(-/-) mice was not associated with a better control of bacterial growth by macrophages. In vivo, a significant increase of recruited phagocytes was observed in the spleen of Ucp2(-/-) mice. This was associated with a higher level of ROS in the spleen. Upregulation of pro-inflammatory cytokines IFNgamma, IL6, and IL1beta and of the chemokine MCP1 was observed in Ucp2(-/-) mice 4 days after infection, preceded by a decrease of the anti-inflammatory cytokine IL10 production. Present data highlight that, in an acute model of infection, UCP2 modulates innate immunity, via the modulation of ROS production, cytokine and chemokine production and consequently phagocyte recruitment.


Asunto(s)
Citocinas/metabolismo , Inmunidad Innata , Canales Iónicos/inmunología , Proteínas Mitocondriales/inmunología , Animales , Citocinas/sangre , Técnicas In Vitro , Canales Iónicos/deficiencia , Canales Iónicos/genética , Listeria monocytogenes/inmunología , Listeria monocytogenes/patogenicidad , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Fagocitos/inmunología , Fagocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Bazo/inmunología , Bazo/metabolismo , Proteína Desacopladora 2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA