Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Br J Pharmacol ; 171(1): 92-106, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24102184

RESUMEN

BACKGROUND AND PURPOSE: Atrial fibrillation (AF) is the most common cardiac arrhythmia and is associated with an increased risk for stroke, heart failure and cardiovascular-related mortality. Candidate targets for anti-AF drugs include a potassium channel K(v)1.5, and the ionic currents I(KACh) and late I(Na), along with increased oxidative stress and activation of NFAT-mediated gene transcription. As pharmacological management of AF is currently suboptimal, we have designed and characterized a multifunctional small molecule, compound 1 (C1), to target these ion channels and pathways. EXPERIMENTAL APPROACH: We made whole-cell patch-clamp recordings of recombinant ion channels, human atrial I(Kur), rat atrial I(KACh), cellular recordings of contractility and calcium transient measurements in tsA201 cells, human atrial samples and rat myocytes. We also used a model of inducible AF in dogs. KEY RESULTS: C1 inhibited human peak and late K(v)1.5 currents, frequency-dependently, with IC50 of 0.36 and 0.11 µmol·L(-1) respectively. C1 inhibited I(KACh)(IC50 of 1.9 µmol·L(-1)) and the Na(v)1.5 sodium channel current (IC50s of 3 and 1 µmol·L(-1) for peak and late components respectively). C1 (1 µmol·L(-1)) significantly delayed contractile and calcium dysfunction in rat ventricular myocytes treated with 3 nmol·L(-1) sea anemone toxin (ATX-II). C1 weakly inhibited the hERG channel and maintained antioxidant and NFAT-inhibitory properties comparable to the parent molecule, resveratrol. In a model of inducible AF in conscious dogs, C1 (1 mg·kg(-1)) reduced the average and total AF duration. CONCLUSION AND IMPLICATIONS: C1 behaved as a promising multifunctional small molecule targeting a number of key pathways involved in AF.


Asunto(s)
Antiarrítmicos/farmacología , Fibrilación Atrial/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Estilbenos/farmacología , Potenciales de Acción , Adulto , Anciano , Animales , Animales Recién Nacidos , Antioxidantes/farmacología , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Modelos Animales de Enfermedad , Perros , Relación Dosis-Respuesta a Droga , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Acoplamiento Excitación-Contracción/efectos de los fármacos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Células HEK293 , Humanos , Canal de Potasio Kv1.5/antagonistas & inhibidores , Canal de Potasio Kv1.5/genética , Canal de Potasio Kv1.5/metabolismo , Masculino , Persona de Mediana Edad , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Factores de Transcripción NFATC/antagonistas & inhibidores , Factores de Transcripción NFATC/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Ratas Sprague-Dawley , Resveratrol , Bloqueadores de los Canales de Sodio/farmacología , Transfección
2.
Am J Physiol Heart Circ Physiol ; 298(5): H1577-87, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20207815

RESUMEN

Protracted QT interval (QTI) adaptation to abrupt heart rate (HR) changes has been identified as a clinical arrhythmic risk marker. This study investigates the ionic mechanisms of QTI rate adaptation and its relationship to arrhythmic risk. Computer simulations and experimental recordings in human and canine ventricular tissue were used to investigate the ionic basis of QTI and action potential duration (APD) to abrupt changes in HR with a protocol commonly used in clinical studies. The time for 90% QTI adaptation is 3.5 min in simulations, in agreement with experimental and clinical data in humans. APD adaptation follows similar dynamics, being faster in mid-myocardial cells (2.5 min) than in endocardial and epicardial cells (3.5 min). Both QTI and APD adapt in two phases following an abrupt HR change: a fast initial phase with time constant < 30 s, mainly related to L-type calcium and slow-delayed rectifier potassium current, and a second slow phase of >2 min driven by intracellular sodium concentration ([Na(+)](i)) dynamics. Alterations in [Na(+)](i) dynamics due to Na(+)/K(+) pump current inhibition result in protracted rate adaptation and are associated with increased proarrhythmic risk, as indicated by action potential triangulation and faster L-type calcium current recovery from inactivation, leading to the formation of early afterdepolarizations. In conclusion, this study suggests that protracted QTI adaptation could be an indicator of altered [Na(+)](i) dynamics following Na(+)/K(+) pump inhibition as it occurs in patients with ischemia or heart failure. An increased risk of cardiac arrhythmias in patients with protracted rate adaptation may be due to an increased risk of early after-depolarization formation.


Asunto(s)
Adaptación Fisiológica/fisiología , Arritmias Cardíacas/fisiopatología , Frecuencia Cardíaca/fisiología , Potenciales de Acción/fisiología , Animales , Canales de Calcio Tipo L/fisiología , Simulación por Computador , Canales de Potasio de Tipo Rectificador Tardío/fisiología , Perros , Electrocardiografía , Ventrículos Cardíacos , Humanos , Canales Iónicos/fisiología , Cinética , Contracción Miocárdica/fisiología , Miocitos Cardíacos/fisiología , Valor Predictivo de las Pruebas , Medición de Riesgo , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA