Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Rev Nephrol ; 18(3): 153-170, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732838

RESUMEN

RNA-binding proteins (RBPs) are of fundamental importance for post-transcriptional gene regulation and protein synthesis. They are required for pre-mRNA processing and for RNA transport, degradation and translation into protein, and can regulate every step in the life cycle of their RNA targets. In addition, RBP function can be modulated by RNA binding. RBPs also participate in the formation of ribonucleoprotein complexes that build up macromolecular machineries such as the ribosome and spliceosome. Although most research has focused on mRNA-binding proteins, non-coding RNAs are also regulated and sequestered by RBPs. Functional defects and changes in the expression levels of RBPs have been implicated in numerous diseases, including neurological disorders, muscular atrophy and cancers. RBPs also contribute to a wide spectrum of kidney disorders. For example, human antigen R has been reported to have a renoprotective function in acute kidney injury (AKI) but might also contribute to the development of glomerulosclerosis, tubulointerstitial fibrosis and diabetic kidney disease (DKD), loss of bicaudal C is associated with cystic kidney diseases and Y-box binding protein 1 has been implicated in the pathogenesis of AKI, DKD and glomerular disorders. Increasing data suggest that the modulation of RBPs and their interactions with RNA targets could be promising therapeutic strategies for kidney diseases.


Asunto(s)
Enfermedades Renales , Proteínas de Unión al ARN , Regulación de la Expresión Génica , Humanos , Enfermedades Renales/genética , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
2.
J Am Soc Nephrol ; 30(4): 564-576, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30867249

RESUMEN

BACKGROUND: RNA-binding proteins (RBPs) are fundamental regulators of cellular biology that affect all steps in the generation and processing of RNA molecules. Recent evidence suggests that regulation of RBPs that modulate both RNA stability and translation may have a profound effect on the proteome. However, regulation of RBPs in clinically relevant experimental conditions has not been studied systematically. METHODS: We used RNA interactome capture, a method for the global identification of RBPs to characterize the global RNA-binding proteome (RBPome) associated with polyA-tailed RNA species in murine ciliated epithelial cells of the inner medullary collecting duct. To study regulation of RBPs in a clinically relevant condition, we analyzed hypoxia-associated changes of the RBPome. RESULTS: We identified >1000 RBPs that had been previously found using other systems. In addition, we found a number of novel RBPs not identified by previous screens using mouse or human cells, suggesting that these proteins may be specific RBPs in differentiated kidney epithelial cells. We also found quantitative differences in RBP-binding to mRNA that were associated with hypoxia versus normoxia. CONCLUSIONS: These findings demonstrate the regulation of RBPs through environmental stimuli and provide insight into the biology of hypoxia-response signaling in epithelial cells in the kidney. A repository of the RBPome and proteome in kidney tubular epithelial cells, derived from our findings, is freely accessible online, and may contribute to a better understanding of the role of RNA-protein interactions in kidney tubular epithelial cells, including the response of these cells to hypoxia.


Asunto(s)
Células Epiteliales/metabolismo , Túbulos Renales Colectores/citología , Túbulos Renales Colectores/metabolismo , Proteoma/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Diferenciación Celular , Hipoxia de la Célula/fisiología , Cilios/metabolismo , Células HEK293 , Humanos , Ratones , Unión Proteica
3.
Angew Chem Int Ed Engl ; 57(26): 7893-7897, 2018 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-29624844

RESUMEN

Recently discovered new chemical entities in RNA modifications have involved surprising functional groups that enlarge the chemical space of RNA. Using LC-MS, we found over 100 signals of RNA constituents that contained a ribose moiety in tRNAs from E. coli. Feeding experiments with variegated stable isotope labeled compounds identified 37 compounds that are new structures of RNA modifications. One structure was elucidated by deuterium exchange and high-resolution mass spectrometry. The structure of msms2 i6 A (2-methylthiomethylenethio-N6-isopentenyl-adenosine) was confirmed by methione-D3 feeding experiments and by synthesis of the nucleobase. The msms2 i6 A contains a thioacetal, shown in vitro to be biosynthetically derived from ms2 i6 A by the radical-SAM enzyme MiaB. This enzyme performs thiomethylation, forming ms2 i6 A from i6 A in a first turnover. The new thioacetal is formed by a second turnover. Along with the pool of 36 new modifications, this work describes a new layer of RNA modification chemistry.


Asunto(s)
Acetales/química , ARN Bacteriano/química , Compuestos de Sulfhidrilo/química , Cromatografía Liquida , Escherichia coli/genética , Conformación de Ácido Nucleico , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA