Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Cell Signal ; 119: 111186, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38643945

RESUMEN

Breast cancer is one of the most common cancers threatening women's health. Our previous study found that silibinin induced the death of MCF-7 and MDA-MB-231 human breast cancer cells. We noticed that silibinin-induced cell damage was accompanied by morphological changes, including the increased cell aspect ratio (cell length/width) and decreased cell area. Besides, the cytoskeleton is also destroyed in cells treated with silibinin. YAP/TAZ, a mechanical signal sensor interacted with extracellular pressure, cell adhesion area and cytoskeleton, is also closely associated with cell survival, proliferation and migration. Thus, the involvement of YAP/TAZ in the cytotoxicity of silibinin in breast cancer cells has attracted our interests. Excitingly, we find that silibinin inhibits the nuclear translocation of YAP/TAZ in MCF-7 and MDA-MB-231 cells, and reduces the mRNA expressions of YAP/TAZ target genes, ACVR1, MnSOD and ANKRD. More importantly, expression of YAP1 gene is negatively correlated with the survival of the patients with breast cancers. Molecular docking analysis reveals high probabilities for binding of silibinin to the proteins in the YAP pathways. DARTS and CETSA results confirm the binding abilities of silibinin to YAP and LATS. Inhibiting YAP pathway either by addition of verteporfin, an inhibitor of YAP/TAZ-TEAD, or by transfection of si-RNAs targeting YAP or TAZ further enhances silibinin-induced cell damage. While enhancing YAP activity by silencing LATS1/2 or overexpressing YAPS127/397A, an active form of YAP, attenuates silibinin-induced cell damage. These findings demonstrate that inhibition of the YAP/TAZ pathway contributes to cytotoxicity of silibinin in breast cancers, shedding lights on YAP/TAZ-targeted cancer therapies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias de la Mama , Transducción de Señal , Silibina , Silimarina , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP , Humanos , Silibina/farmacología , Silimarina/farmacología , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transducción de Señal/efectos de los fármacos , Células MCF-7 , Línea Celular Tumoral , Fosfoproteínas/metabolismo , Transactivadores/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Supervivencia Celular/efectos de los fármacos , Simulación del Acoplamiento Molecular , Proliferación Celular/efectos de los fármacos , Verteporfina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
2.
Connect Tissue Res ; 65(2): 170-185, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38526028

RESUMEN

PURPOSE: Besides comprising scaffolding, extracellular matrix components modulate many biological processes including inflammation and cell differentiation. We previously found precoating cell plates with extracellular matrix collagen I, or its denatured product gelatin, causes aggregation of macrophage-like human lymphoma U937 cells, which are induced to differentiation by phorbol myristate treatment. In the present study, we investigated the influence of gelatin or collagen I precoating on the bacteria phagocytosis in PMA-stimulated U937 cells. MATERIALS AND METHODS: Colony forming units of phagocytosed bacteria, Giemsa-staining of cells with phagocytosed bacteria, confocal microscopic and flow cytometric analysis of cells with phagocytosed FITC-labeled bacteria and non-bioactive latex beats were conducted. RESULTS: Gelatin precoating enhances the phagocytosis of both Gram-negative and positive bacteria, as shown by the increased colony forming units of bacteria phagocytosed by cells, and increased intracellular bacteria observed after Giemsa-staining. But collagen I has no marked influence. Confocal microscopy reveals that both live and dead FITC-bacteria were phagocytosed more in the cells with gelatin-coating but not collagen-coating. Of note, both gelatin and collagen I coating had no influence on the phagocytosis of non-bioactive latex beads. Since gelatin-coating increases autophagy but collagen I has no such impact, we are curious about the role of autophagy. Inhibiting autophagy reduced the phagocytosis of bacteria, in cells with gelatin-coating, while stimulating autophagy enhanced phagocytosis. CONCLUSION: This study finds the bacteria-phagocytosis stimulatory effect of gelatin in PMA-treated U937 cells and reveals the positive regulatory role of autophagy, predicting the potential use of gelatin products in anti-bacterial therapy.


Asunto(s)
Colágeno Tipo I , Gelatina , Humanos , Gelatina/farmacología , Células U937 , Fluoresceína-5-Isotiocianato , Fagocitosis , Colágeno , Bacterias
3.
Arch Biochem Biophys ; 744: 109691, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37473980

RESUMEN

Ferroptosis, an iron-dependent cell death, is caused by lipid peroxidation. Noteworthily, accumulation of iron and lipid peroxidation are found in the proximity of the neuritic plaque, a hallmark of Alzheimer's disease (AD), but the relationship between ferroptosis and neuroinflammation in AD is unclear. Silibinin, extracted from the Silybum marianum, is possibly developed as an agent for AD treatment from its neuroprotective effect, but the effect of silibinin on sporadic AD that accounts for more than 95% of AD remains unclear. To determine whether silibinin alleviates the pathogenesis of sporadic AD and investigate the underlying mechanisms, STZ-treated HT22 murine hippocampal neurons and intracerebroventricular injection of streptozotocin (ICV-STZ) rats, a sporadic AD model, were used in this study. Results show that silibinin not only promotes survival of STZ-treated HT22 cells, but also ameliorates the cognitive impairment and anxiety/depression-like behavior of ICV-STZ rats. We here demonstrate that silibinin evidently inhibits the protein level of p53 as well as upregulates the protein level of cystine/glutamate antiporter SLC7A11 and ferroptosis inhibitor GPX4, but not p21, leading to the protection against STZ-induced ferroptotic damage. Immunofluorescent staining also shows that accumulation of lipid peroxidation induced by ferroptotic damage leads to increased fluorescence of 8-oxo-deoxyguanosine (8-OHDG), a maker of oxidized DNA. The oxidized DNA then leaks to the cytoplasm and upregulates the expression of the stimulator of interferon gene (STING), which triggers the production of IFN-ß and other inflammatory cascades including NF-κB/TNFα and NLRP3/caspase 1/IL-1ß. However, the treatment with silibinin blocks the above pathological changes. Moreover, in HT22 cells with/without STZ treatment, GPX4-knockdown increases the protein level of STING, indicating that the ferroptotic damage leads to the activation of STING signaling pathway. These results imply that silibinin exerts neuroprotective effect on an STZ-induced sporadic AD model by downregulating ferroptotic damage and thus the downstream STING-mediated neuroinflammation.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Ratas , Ratones , Animales , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Silibina/farmacología , Silibina/uso terapéutico , Regulación hacia Abajo , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estreptozocina/efectos adversos , Modelos Animales de Enfermedad
4.
Arch Biochem Biophys ; 738: 109558, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36878340

RESUMEN

Ultraviolet B (UVB) irradiation causes skin inflammation and apoptosis. Mitochondria are highly dynamic and undergo constant fusion and fission that are essential for maintaining physiological functions of cells. Although dysfunction of mitochondria has been implicated in skin damages, little is known about the roles of mitochondrial dynamics in these processes. UVB irradiation increases abnormal mitochondrial content but decreases mitochondrial volume in immortalized human keratinocyte HaCaT cells. UVB irradiation resulted in marked upregulation of mitochondrial fission protein dynamin-related protein 1 (DRP1) and downregulation of mitochondrial outer membrane fusion proteins 1 and 2 (MFN1 and MFN2) in HaCaT cells. Mitochondrial dynamics was discovered to be crucial for NLRP3 inflammasome and cGAS-STING pathway activation, as well as the induction of apoptosis. Inhibition of mitochondrial fission by treatments with a DRP1 inhibitor, mdivi-1, or with DRP1-targeted siRNA, efficiently prevented UVB-induced NLRP3/cGAS-STING mediated pro-inflammatory pathways or apoptosis in the HaCaT cells, whereas inhibition of mitochondrial fusion with MFN1and 2 siRNA increased these pro-inflammatory pathways or apoptosis. The enhanced mitochondrial fission and reduced fusion caused the up-regulation of reactive oxygen species (ROS). Application of an antioxidant, N-acetyl-l-cysteine (NAC), which scavenges excessive ROS, attenuated inflammatory responses through suppressing NLRP3 inflammasome and cGAS-STING pathway activation, and rescued cells from apoptosis caused by UVB-irradiation. Together, our findings revealed the regulation of NLRP3/cGAS-STING inflammatory pathways and apoptosis by mitochondrial fission/fusion dynamics in UVB-irradiated HaCaT cells, providing a new strategy for the therapy of UVB skin injury.


Asunto(s)
Dinámicas Mitocondriales , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Células HaCaT/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Queratinocitos/metabolismo , Apoptosis/efectos de la radiación , Nucleotidiltransferasas/metabolismo , ARN Interferente Pequeño/metabolismo
5.
Arch Biochem Biophys ; 737: 109553, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36842493

RESUMEN

Ultraviolet B (UVB) irradiation causes skin damages. In this study, we focus on the involvement of mitochondrial disorders in UVB injury. Surprisingly, UVB irradiation increases the amounts of mitochondria in human immortalized keratinocytes HaCaT. However, further analysis shows that ATP levels decreased by UVB treatment in accordance with the collapse of mitochondrial membrane potential (MMP), suggesting an accumulation of dysfunctional mitochondria in UVB-irradiated HaCaT cells. Mitophagy, mainly mediated by PINK1 and parkin, is critical for the elimination of damaged mitochondria. Western blot results show that the levels of both PINK1 and parkin are decreased in UVB-irradiated cells, indicating the impairment of mitophagy. Silencing the expression of PINK1 or parkin by transfection of siRNA shows essentially the same damage to the cells as UVB irradiation does, including increased mitochondrial amount, decreased MMP and ATP production, and enhanced apoptosis, evidencing that repression of PINK1/parkin-mediated mitophagy plays a primary cause of UVB-caused cells damages. We previously found that HaCaT cells exposed to UVB showed activation of the cGAS-STING pathway and apoptosis. Here, silencing PINK1 or parkin also increases the protein levels of cGAS and STING, facilitates nuclear accumulation of NF-κB, and promotes the transcription of IFNß, suggesting for the activation of STING pathway. Mitophagy impairment either by UVB-irradiation or by PINK1/parkin silencing initiates caspase-3-mediated apoptosis, as shown by the activation of caspase-3 and cleavage of PARP, as well as the increase of Hoechst-positive stained cells and Annexin V-positive cells. Further studies find that Bax-mediated permeabilization of mitochondrial membrane is critical for cell apoptosis, as well as the cytosolic leakage of mtDNA in UVB-treated cells, which results in cGAS-STING activation, and these processes are negatively-regulated by PINK1/parkin-mediated mitophagy. This study reveals the involvement of dysfunctional mitochondria due to impaired mitophagy in the damaging effect of UVB irradiation on HaCaT cells. Restoring the mitophagy has the potential to be developed as a new strategy to protect skin from UVB damages.


Asunto(s)
ADN Mitocondrial , Mitofagia , Humanos , ADN Mitocondrial/metabolismo , Caspasa 3/metabolismo , Mitocondrias/metabolismo , Queratinocitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Quinasas/genética , Adenosina Trifosfato/metabolismo
6.
Toxicol In Vitro ; 82: 105388, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35595033

RESUMEN

Alcoholic liver disease has become one of the main causes of liver injury, and its prevention and cure are important medical tasks. Silibinin, a natural flavonoid glycoside, is a conventional hepatic protectant. This study elucidates the modulation of ferroptosis in silibinin's protective effects on ethanol- or acetaldehyde-induced liver cell damage by using human carcinomatous liver HepG2 cells and immortalized liver HL7702 cells. Our results show that ferroptosis is induced in the cells treated with ethanol or acetaldehyde, as evidenced by the increased ROS stress and iron level. Silibinin resolves the oxidative stress and reduces iron level. Ferroptosis induced by ethanol- or acetaldehyde involving nuclear receptor co-activator 4 (NCOA4)-dependent autophagic degradation of ferritin, a protein for storing iron is rescued by silibinin. PINK1 and Parkin-mediated mitophagy is arrested in ethanol- or acetaldehyde-treated cells but reversed by silibinin. Ferritin degradation and ROS level are further increased when PINK1 or Parkin is silenced in the cells treated with ethanol or acetaldehyde. Collectively, our study reveals that silibinin inhibits ethanol- or acetaldehyde-induced ferroptosis in two liver cell lines, HepG2 and HL7702 cells, providing new therapeutic strategies for alcoholic liver injury.


Asunto(s)
Acetaldehído , Ferroptosis , Acetaldehído/toxicidad , Línea Celular , Etanol/toxicidad , Ferritinas , Humanos , Hierro , Hígado , Proteínas Quinasas , Especies Reactivas de Oxígeno , Silibina/farmacología , Ubiquitina-Proteína Ligasas
7.
Connect Tissue Res ; 63(5): 498-513, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35129018

RESUMEN

PURPOSE: Type V collagen (collagen V) is one of the important components of extracellular matrix (ECM) in pancreas. We previously reported that pre-coating collagen V on the culture dishes enhanced insulin production in INS-1 rat pancreatic ß cells. In this study, we investigate the underlying mechanism. RESULTS: Insulin biosynthesis and secretion are both increased in INS-1 cells cultured on collagen V-coated dishes, accompanied by the reduced nuclear translocation of Yes-associated protein (YAP), a transcriptional co-activator. YAP, the downstream effector of Hippo signaling pathway, plays an important role in the development and function of pancreas. Inhibition of YAP activation by verteporfin further up-regulates insulin biosynthesis and secretion. Silencing large tumor suppressor (LATS), a core component of Hippo pathway which inhibits activity of YAP by phosphorylation, by siRNA transfection inhibits both insulin biosynthesis and secretion. In the present study, the protein level of insulin-like growth factor 1 receptor (IGF-1 R), detected as the upstream molecule of YAP, is reduced in the INS-1 cells cultured on the dishes coated with collagen V. The silencing of IGF-1 R by siRNA transfection further enhances insulin biosynthesis and secretion. IGF-1 treatment reduces collagen V-induced up-regulation of insulin biosynthesis and secretion, accompanying the increased nuclear YAP. CONCLUSION: Inhibition of IGF-1 R/YAP signal pathway is involved in collagen V-induced insulin biosynthesis and secretion in INS-1 cells.


Asunto(s)
Insulina , Islotes Pancreáticos , Receptor IGF Tipo 1 , Transducción de Señal , Proteínas Señalizadoras YAP , Animales , Colágeno Tipo V/farmacología , Insulina/biosíntesis , Islotes Pancreáticos/metabolismo , Fosforilación , ARN Interferente Pequeño/metabolismo , Ratas , Receptor IGF Tipo 1/metabolismo , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP/metabolismo
8.
Toxicol In Vitro ; 80: 105330, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35158046

RESUMEN

Silibinin is a natural polyphenolic flavonoid, isolated from the seeds of the milk thistle of Silybum marianum (L.) Gaertn. Silibinin has been widely used clinically as a traditional medicine for liver diseases. This study investigated the protective role of silibinin in ethanol- or acetaldehyde-induced apoptosis in human carcinomatous liver HepG2 cells and immortalized liver HL7702 cells, focusing on elucidation of the underlying mechanism in vitro. The toxicity of ethanol or acetaldehyde was evaluated by MTT assay. Apoptosis-related proteins, mitochondrial fission-associated proteins and mitochondrial fusion-associated proteins were analyzed by western blotting and immunofluorescence microscopy. Present experimental results demonstrated that silibinin improved cell viability, reduced the enzyme activities of AST/ALT and ALDH/ADH, inhibited apoptosis and recovered mitochondrial function in ethanol- or acetaldehyde-treated HepG2 or HL7702 cells. Silibinin reduced the expression of mitochondrial fission-associated proteins, dynamin-related protein 1 (DRP1), but increased mitochondrial fusion-associated proteins, optic atrophy 1 (OPA1) and mitofusin 1 (MFN1). Accordingly, inhibition of DRP1 activity with its pharmacological inhibitor or siDRP1 efficiently attenuated ethanol- or acetaldehyde-induced apoptosis, whereas activation of DRP1 by using staurosporine (STS) further increased apoptosis in ethanol- or acetaldehyde-treated HepG2 or HL7702 cells. The results show that silibinin protects cells against ethanol- or acetaldehyde-induced mitochondrial fission that results in apoptosis.


Asunto(s)
Acetaldehído/toxicidad , Etanol/toxicidad , Dinámicas Mitocondriales/efectos de los fármacos , Sustancias Protectoras/farmacología , Silibina/farmacología , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Humanos , Hígado/citología , Proteínas Mitocondriales/metabolismo
9.
J Photochem Photobiol B ; 216: 112147, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33561689

RESUMEN

Ultraviolet B (UVB) from the sunlight is a major environmental cause for human skin damages, inducing cell death, inflammation, senescence and even carcinogenesis. The natural flavonoid silibinin, clinically used as liver protectant, has protective effects against UVB-caused skin injury in vivo and in vitro. Silibinin is often classified as a phytoestrogen, because it modulates the activation of estrogen receptors (ERs). However, whether silibinin's estrogenic effect contributes to the skin protection against UVB injury remains to be elucidated. The issue was explored in this study by using the human foreskin dermal fibroblasts (HFF) and human non-malignant immortalized keratinocytes (HaCaT). In HFF, pre-treatment with silibinin rescued UVB-irradiated cells from apoptosis. Interestingly, silibinin increased the whole cellular and nuclear levels of ERα and ERß in UVB-irradiated cells. Activation of ERs by treatment with estradiol elevated the cell survival and reduced apoptosis in UVB-treated cells. ERα agonist increased cell survival, while its antagonist decreased it. ERß agonist also increased cell survival, but the antagonist had no effect on cell survival. Transfection of the cells with the small interfering RNAs (si-RNAs) to ERα or ERß diminished the protective effect of silibinin on UVB-irradiated cells. In UVB-treated HaCaT cells, both ERα and ERß were increased by silibinin treatment. Inhibition of activation and expression of ERα or ERß by specific antagonists and si-RNAs, respectively, reduced cell survival in UVB-treated HaCaT cells regardless of silibinin treatment. Taken together, it is summarized that silibinin up-regulates both ERα and ERß pathways in UVB-treated dermal HFF cells and epidermal HaCaT cells, leading to protection of skin from UVB-damage.


Asunto(s)
Fibroblastos/efectos de la radiación , Sustancias Protectoras/química , Receptores de Estrógenos/antagonistas & inhibidores , Silibina/química , Apoptosis/efectos de la radiación , Fibroblastos/citología , Células HaCaT , Humanos , Sustancias Protectoras/farmacología , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/efectos de la radiación , Receptores de Estrógenos/efectos de la radiación , Transducción de Señal , Silibina/farmacología , Piel , Rayos Ultravioleta , Regulación hacia Arriba/efectos de la radiación
10.
Mol Immunol ; 131: 180-190, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33423764

RESUMEN

Exposure to ultraviolet B (UVB) from sunlight causes DNA damage, serious cellular inflammation and aging, and even cell death in the skin, commonly known as sunburn, leading to cutaneous tissue disorders. DNA damage can be sensed as a danger-associated molecular pattern (DAMP) by the innate immune system. It has not been studied, however, whether cGAS-STING activation is involved in the apoptosis induced by UVB irradiation or by cisplatin treatment. Here we report the findings that within hours of DNA damages keratinocytes show an innate immune response, which involves the activation of cGAS-STING; a cytosolic DNA receptor, cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase), cyclic GMP-AMP (cGAMP) synthase, and DNA sensing adaptor, STING (protein stimulator of interferon genes). Either UVB irradiation or cisplatin treatment can cause DNA damages, releasing fragmented DNA from nucleus and/or mitochondria. Roles of cGAS-STING were examined in the HaCaT cells with DNA damages caused by UVB irradiation or cisplatin treatment. Silencing STING by siRNA rescued HaCaT cells from UVB or cisplatin-induced apoptosis. NF-κB, one of the major downstream components of STING pathway, which usually regulates the classical STING apoptotic pathway, was translocated to nucleus in the HaCaT cells irradiated with UVB. This translocation was attenuated by STING silencing. Treatment with BAY, an inhibitor of NF-κB pathway, blocked UVB-induced apoptosis. cGAS-STING-mediated production of IFNß was induced by nuclear translocation of interferon regulatory factor 3 (IRF3). UVB irradiation inceased the nuclear translocation of IRF3, accompanied by enhanced expression level of IFNß mRNA. The nuclear translocation of IRF3 and expression of IFNß mRNA were attenuated by STING silencing. Treatment with MRT67307, an inhibitor of TBK1-IRF3-IFNß pathway, blocked UVB-induced apoptosis. Therefore, we conclude that NF-κB pathway and IFNß pathway residing in the downstream of STING are resposible for apoptosis of UVB-irradiated or cisplatin-treated HaCaT cells.


Asunto(s)
Apoptosis/genética , Daño del ADN/fisiología , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Transducción de Señal/fisiología , Células HaCaT , Humanos , Inmunidad Innata/fisiología , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/metabolismo , Queratinocitos/metabolismo , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
11.
Mol Cell Biochem ; 474(1-2): 243-261, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32789659

RESUMEN

Skeletal muscle regeneration is a complex process, involving the proliferation, migration, and differentiation of myoblasts. Recent studies suggest that some natural flavanones stimulate myogenesis. However, the effect of plant estrogen, silibinin, on the regulation of myoblast behaviors is unclarified. In this study, we investigated the effects of silibinin on immortalized murine myoblast C2C12 in the aspects of proliferation, migration, differentiation along with underlying mechanisms. The results show that silibinin at concentrations below 50 µM enhanced the migration and differentiation of C2C12 cells, but had no effect on cell proliferation. Silibinin significantly promoted the production of ROS, which appeared to play important roles in the migration and differentiation of the myoblasts. Interestingly, among ROS, the superoxide anion and hydroxyl radical were associated with the migration, whereas hydrogen peroxide contributed to the myogenic differentiation. We used ER agonist and antagonist to explore whether estrogen receptors (ERs), which are affected by silibinin treatment in the silibinin-enhanced C2C12 migration and differentiation. Migration was independent of ERs, whereas the differentiation was associated with decreased ERα activity. In summary, silibinin treatment increases ROS levels, leading to the promotion of migration and myogenic differentiation. Negative regulation ERα of differentiation but not of migration may suggest that ERα represses hydrogen peroxide generation. The effect of silibinin on myoblast migration and differentiation suggests that silibinin may have therapeutic benefits for muscle regeneration.


Asunto(s)
Diferenciación Celular , Movimiento Celular , Receptor alfa de Estrógeno/antagonistas & inhibidores , Regulación de la Expresión Génica/efectos de los fármacos , Desarrollo de Músculos , Mioblastos/fisiología , Especies Reactivas de Oxígeno/metabolismo , Silibina/farmacología , Animales , Antineoplásicos Fitogénicos/farmacología , Proliferación Celular , Células Cultivadas , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Ratones , Mioblastos/citología , Mioblastos/efectos de los fármacos
12.
Arch Biochem Biophys ; 689: 108458, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32524997

RESUMEN

Our previous studies showed that silibinin promoted activation of caspases to induce apoptosis in human breast cancer MCF-7 cells by down-regulating the protein expression level of estrogen receptor (ER) α and up-regulating ERß. Recently, it has been reported that silibinin-induced apoptosis also involved nuclear translocation of apoptosis-inducing factor (AIF). Here we report that silibinin induces nuclear translocation of AIF through the down-regulation of ERα and up-regulation of ERß in a concentration dependent manner in MCF-7 cells. AIF knockdown with siRNA significantly reverses silibinin-induced apoptosis. The nuclear translocation of AIF is enhanced by treatment with MPP, an ERα antagonist, and blocked with PPT, an ERα agonist. In contrast to ERα activity, the nuclear AIF is increased with an ERß agonist, DPN and blocked with an ERß antagonist, PHTPP. Autophagy, negatively regulated by ERα, positively controls AIF-mediated apoptosis, as evidenced by the preventive effect of autophagy inhibitor 3-MA and siRNA targeting LC3, on the nuclear translocation of AIF and cell death induced by silibinin co-treatment with or without MPP. In sum we conclude that AIF in nuclei is involved in silibinin-induced apoptosis, and the nuclear translocation of AIF is increased by down-regulated ERα pathway and/or up-regulated ERß pathway in MCF-7 cells, accompanying up-regulation of autophagy.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Factor Inductor de la Apoptosis/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Silibina/farmacología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Células MCF-7
13.
Arch Biochem Biophys ; 685: 108284, 2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32014401

RESUMEN

We reported previously that higher doses (150-250 µM) of silibinin enhanced fission and inhibited fusion of mitochondria, accompanying apoptosis of double-positive breast cancer cell line MCF-7 cells and triple-negative breast cancer cell line MDA-MB-231 cells. We report here three important questions yet unclarified in the previous study; 1) Whether enhanced fission of mitochondria by the treatment of silibinin leads to mitophagy, 2) Whether mitophagy positively contributes to apoptosis and 3) Whether estrogen receptor-positive (ER+) MCF-7 cells and estrogen receptor-negative (ER-) MDA-MB-231 cells are affected in a different way by silibinin treatment, since silibinin often works through ERs signaling pathway. Mitophagy driven by Pink1/Parkin signaling, plays an important role in eliminating damaged mitochondria. Indeed, increased expression of Pink1 and the recruitment of Parkin and LC3-II to mitochondria by the treatment with silibinin account for silibinin induction of mitophagy. In this study, the effects of mitochondrial division inhibitor 1 (mdivi-1) and small interfering RNA targeting dynamin-related protein 1 (DRP1) were examined to reveal the effect of mitochondrial fission on mitophagy. As expected, mdivi-1 or siRNA targeting DRP1 reversed silibinin-induced mitochondrial fission due to down-regulation in the expression of DRP1. Inhibition of mitochondrial fission by mdivi-1 prevented induction of mitophagy as well as autophagy in both MCF-7 and MDA-MB-231 cells, indicating that silibinin-induced mitochondrial fission leads to mitophagy. Inhibition of mitochondrial fission efficiently prevented silibinin-induced apoptosis in MCF-7 and MDA-MB-231 cells in our previous work, and the second point of the present study, inhibition of mitophagy by Pink1 or Parkin knockdown increased silibinin-induced apoptosis of these cells, respectively, suggesting that the mitophagy induced by silibinin treatment serves as a cytoprotective effect, resulting in reduction of apoptosis of cancer cells in both cells. In the third point, we studied whether estrogen receptors (ERs) played a role in silibinin-induced mitophagy and apoptosis in MCF-7 and MDA-MB-231 cells. ERα and ERß are not involved in silibinin-induced mitophagic process in MCF-7 and MDA-MB-231 cells. These findings demonstrated that silibinin induced mitochondria fission leads to mitophagy, which attenuates silibinin-induced apoptosis not through ERs-Pink1 or -Parkin pathway in MCF-7 and MDA-MB-231.


Asunto(s)
Apoptosis/efectos de los fármacos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Mitofagia/efectos de los fármacos , Silibina/farmacología , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Dinaminas/farmacología , Técnicas de Silenciamiento del Gen , Humanos , Biogénesis de Organelos , Proteínas Quinasas/genética , Quinazolinonas/farmacología , Ubiquitina-Proteína Ligasas/genética
14.
Free Radic Res ; 54(1): 64-75, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31905044

RESUMEN

Bleomycin is a glycopeptide antibiotic that is widely employed in the therapy of a range of lymphomas and germ cell tumours. But the therapeutic efficacy of bleomycin is limited by development of lung fibrosis. The cytotoxicity of bleomycin is mostly ascribed to mitochondrial DNA (mtDNA) damage, while a protective effect of metformin against bleomycin-induced lung fibrosis results from the inhibition of mitochondrial complex I. Since mitochondria and bacteria have certain similarities in structure and function, we used Escherichia coli for simplification in the present work to investigate the relationship between metformin and bleomycin with apparently opposite effects on mitochondrial DNA damage. Bleomycin lethality to E. coli was ameliorated by metformin treatment accompanying further increase of the level of reactive oxygen species. Catalase but not superoxide dismutases attenuated the protective effect of metformin. Meanwhile, treatment with hydrogen peroxide enhanced the protection, indicating that metformin may protect E. coli from bleomycin-induced bactericide via enhanced generation of hydrogen peroxide. Moreover, silibinin, a hepatoprotective polyphenolic flavonoid attenuates the cytotoxicity of bleomycin to E. coli via enhanced generation of hydrogen peroxide as well. This bacterial model in place of mitochondria can provide us with easier screening for the molecules with capability of reducing the bleomycin side effect.


Asunto(s)
Antibióticos Antineoplásicos/efectos adversos , Bleomicina/efectos adversos , Actividad Bactericida de la Sangre/efectos de los fármacos , Escherichia coli/patogenicidad , Peróxido de Hidrógeno/química , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Humanos , Hipoglucemiantes/farmacología , Metformina/farmacología
15.
J Cell Physiol ; 235(2): 1821-1837, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31432516

RESUMEN

Extracellular matrix (ECM) has a marked influence on adipose tissue development. Adipose tissue formation is initiated with proliferation of preadipocytes and migration before undergoing further differentiation into mature adipocytes. Previous studies showed that collagen I (col I) provides a good substratum for 3T3-L1 preadipocytes to grow and migrate. However, it remains unclear whether and how col I regulates adipogenic differentiation of preadipocytes. This study reports that lipid accumulation, representing in vitro adipogenesis of the 3T3-L1 preadipocytes or the mouse primary adipocyte precursor cells derived from subcutaneous adipose tissue in the inguinal region is inhibited by the culture on col I, owing to downregulation of adipogenic factors. Previous study shows that col I enhances 3T3-L1 cell migration via stimulating the nuclear translocation of yes-associated protein (YAP). In this study, we report that downregulation of YAP is associated with in vitro adipogenesis of preadipocytes as well as with in vivo adipose tissue of high-fat diet fed mice. Increased expression of YAP in the cells cultured on col I-coated dishes is correlated with repression of adipogenic differentiation processes. The inactivation of YAP using YAP inhibitor, verteporfin, or YAP small-interfering RNA enhanced adipogenic differentiation and reversed the inhibitory effect of col I. Activation of YAP either by the transfection of YAP plasmid or the silence of large tumor suppressor 1 (LATS1), an inhibitory kinase of YAP, inhibited adipogenic differentiation. The results indicate that col I inhibits adipogenic differentiation via YAP activation in vitro.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adipocitos/metabolismo , Adipogénesis/fisiología , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/fisiología , Colágeno Tipo I/metabolismo , Células 3T3-L1 , Animales , Dieta Alta en Grasa , Ratones , Células Madre/metabolismo , Proteínas Señalizadoras YAP
16.
Food Funct ; 11(1): 328-338, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31799535

RESUMEN

Skeletal muscle regeneration is a complicated process, requiring the proliferation, migration and differentiation of myoblasts whose processes are highly regulated by the extracellular matrix (ECM) surrounding the muscle tissues in vivo. However, the effects of respective ECM components on the regulation of myoblast behaviors are unknown. In this study, we report on the effect of collagen I, a major ECM component in muscle tissue and a popular food supplement, on mouse C2C12 myoblast proliferation, migration and differentiation as well as the underlying mechanisms. Collagen I (col 1) enhances the migration and myogenic differentiation of C2C12 cells, but has no effect on cell proliferation. Col I significantly promotes the production and release of interleukin-6 via nuclear translocation of nuclear factor κB (NF-κB) p65. The release of IL-6 plays a critical role in the col I-enhanced migration and differentiation of C2C12 cells. Furthermore, col I increases phosphorylation of focal adhesion kinase (FAK) that is involved in the nuclear translocation of NF-κB p65. Collectively, col I enhances the migration and differentiation of C2C12 cells through IL-6 release induced by FAK/NF-κB p65 activation.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Colágeno Tipo I/farmacología , Quinasa 1 de Adhesión Focal/metabolismo , Interleucina-6/metabolismo , Mioblastos/efectos de los fármacos , Factor de Transcripción ReIA/metabolismo , Animales , Línea Celular , Ratones , Desarrollo de Músculos , Mioblastos/citología
17.
Mol Cell Biochem ; 463(1-2): 189-201, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31612353

RESUMEN

Human triple negative breast cancer cells, MDA-MB-231, show typical epithelial to mesenchymal transition associated with cancer progression. Mitochondria play a major role in cancer progression, including metastasis. Changes in mitochondrial architecture affect cellular migration, autophagy and apoptosis. Silibinin is reported to have anti-breast cancer effect. We here report that silibinin at lower concentrations (30-90 µM) inhibits epithelial to mesenchymal transition (EMT) of MDA-MB-231, by increasing the expression of epithelial marker, E-cadherin, and decreasing the expression of mesenchymal markers, N-cadherin and vimentin. Besides, silibinin inhibition of cell migration is associated with reduction in the protein expression of matrix metalloproteinases 2 and 9 (MMP2 and MMP9) and paxillin. In addition, silibinin treatment increases mitochondrial fusion through down-regulating the expression of mitochondrial fission-associated protein dynamin-related protein 1 (DRP1) and up-regulating the expression of mitochondrial fusion-associated proteins, optic atrophy 1, mitofusin 1 and mitofusin 2. Silibinin perturbed mitochondrial biogenesis via down-regulating the levels of mitochondrial biogenesis regulators including mitochondrial transcription factor A (TFAM), peroxisome proliferator-activated receptor gamma coactivator (PGC1) and nuclear respiratory factor (NRF2). Moreover, DRP1 knockdown or silibinin inhibited cell migration, and MFN1&2 knockdown restored it. Mitochondrial fusion contributes to silibinin's negative effect on cell migration. Silibinin decreased reactive oxygen species (ROS) generation, leading to inhibition of the NLRP3 inflammasome activation. In addition, knockdown of mitofusin 1&2 (MFN 1&2) relieved silibinin-induced inhibition of NLRP3 inflammasome activation. Repression of ROS contributes to the inhibition of the expression of NLRP3, caspase-1 and IL-ß proteins as well as of cell migration. Taken together, our study provides evidence that silibinin impairs mitochondrial dynamics and biogenesis, resulting in reduced migration and invasion of the MDA-MB-231 breast cancer cells.


Asunto(s)
Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/biosíntesis , Proteínas de Neoplasias/biosíntesis , Silibina/farmacología , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Dinámicas Mitocondriales/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Neoplasias/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
18.
Physiol Behav ; 213: 112689, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31669775

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease, mainly characterized by cognitive dysfunction and memory impairment. Due to its pathological similarities to type 2 diabetes mellitus (T2DM), such as ß-amyloid deposition, oxidative stress, inflammation, disordered glucose metabolism, impaired signaling pathways of insulin and insulin-like growth factor-1 (IGF-1), we speculate that AD is another form of brain diabetes. Clarifying the relationship between T2DM and AD is important for us to better understand the exact pathological mechanisms of AD. Silibinin, a polyphenolic flavonoid extracted from the seeds of Silybum marianum, exerts hepatoprotective, anti- diabetic and neuroprotective effects. Streptozotocin (STZ), which is used to disrupt the insulin signal transduction pathway, could well mimic the sporadic AD models by intracerebroventricular (ICV) injection. Therefore, we selected ICV injection of STZ (ICV-STZ) to investigate the neuroprotective effects of silibinin in rats and to make a foundation for further exploring the relationship between AD and T2DM. ICV-STZ obviously caused memory damage, sharply reduced the number of nissl bodies and destroyed morphological structure of hippocampal neuronal cells, while silibinin attenuated the damages. Moreover, silibinin significantly decreased STZ-induced tau hyperphosphorylation (ser404) in hippocampus and cerebral cortex, markedly inhibited apoptosis of neurons induced by STZ, and up-regulated insulin signal transduction pathway. Silibinin exerts neuroprotective effect in STZ-treated rats, indicating the potential of silibinin for the treatment of AD patients with T2DM in future.


Asunto(s)
Apoptosis/efectos de los fármacos , Disfunción Cognitiva/prevención & control , Insulina/metabolismo , Trastornos de la Memoria/prevención & control , Transducción de Señal/efectos de los fármacos , Silibina/farmacología , Estreptozocina/antagonistas & inhibidores , Animales , Corteza Cerebral/metabolismo , Disfunción Cognitiva/inducido químicamente , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/prevención & control , Hipocampo/patología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Trastornos de la Memoria/inducido químicamente , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/patología , Degeneración Nerviosa/prevención & control , Fármacos Neuroprotectores/farmacología , Fosforilación/efectos de los fármacos , Ratas , Proteínas tau/metabolismo
19.
Int Immunopharmacol ; 76: 105845, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31470266

RESUMEN

BACKGROUND: Extracellular matrix (ECM) comprising the environments of multicellular society has a dynamic network structure. Collagen is one of the ubiquitous components of ECM. Collagen affects the inflammatory response by regulating the release of pro-inflammatory cytokines from cells. Gelatin, denatured collagen found temporally in tissues, is supposed to be pathophysiologically involved in tissue remodeling, inflammation caused by tissue damage. Previous reports indicate that, phorbol myristate (PMA)-stimulated human U937 (lymphoma cell line) cells that are often used as macrophage-like cells, show cell aggregations when cultured on type I collagen (col I) or gelatin-coated dishes, accompanying the changes of production and release of proinflammatory factors. However, it still remains to be examined whether collagen and gelatin affects normal macrophages as well. AIM: This study aims to investigate the effect of col. I, the main component of collagenous protein and its denatured product, gelatin, on mouse peritoneal macrophages (MPMs). METHODS: MTT assay, flow cytometric analysis of ROS, biochemical detection of antioxidant levels, ELISA assay, and western blot were used. RESULTS: MPMs formed multicellular aggregates on col. I - and gelatin-coated dishes with a concentration- and time-dependent manner. Further studies showed that the culture on col. I and gelatin up-regulated the protein expression and secretion of pro-inflammatory molecules such as IL-1ß, TNFα and prostaglandin E2 (PGE2) in MPMs. The levels were higher in the cells on gelatin than those on col. I. ROS levels are significantly increased in the cells cultured on both col. I- and gelatin-coated dishes, accompanying decreased levels of antioxidant enzyme catalase (CAT) and anti-oxidant glutathione (GSH), and enhanced nuclear translocation of NF-κB. CONCLUSION: Col I - or gelatin-coated culture induced the formation of multicellular aggregates and increased production of NF-κB-associated pro-inflammatory molecules in MPMs through up-regulation of ROS levels.


Asunto(s)
Colágeno Tipo I , Gelatina , Macrófagos Peritoneales/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Agregación Celular , Dinoprostona/metabolismo , Femenino , Interleucina-1beta/metabolismo , Macrófagos Peritoneales/metabolismo , Ratones , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
20.
Mol Cell Biochem ; 460(1-2): 81-92, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31183735

RESUMEN

High levels of circulating free fatty acids often trigger pancreatic ß cell dysfunction during the development of type 2 diabetes. Silibinin, the main component of Silybum marianum fruit extract (silymarin), is reported to have anti-diabetic effect. This study is designed to determine the protective effect of silibinin on palmitic acid-induced damage in a rat pancreatic ß-cell line, INS-1 cells. Our results demonstrate that silibinin improves cell viability, enhances insulin synthesis and secretion, and resumes normal mitochondrial function in palmitic acid-treated INS-1 cells. An accumulating body of evidence has shown that the estrogen receptors are key molecules involved in glucose and lipid metabolism. Our results suggest that silibinin upregulates ERα signaling pathway from the finding that ERα-specific inhibitors abolish the anti-lipotoxic effect of silibinin. In conclusion, these findings suggest that silibinin protects INS-1 cells against apoptosis and mitochondrial damage through upregulation of ERα pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Receptor alfa de Estrógeno/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Mitocondrias/patología , Ácido Palmítico/toxicidad , Silibina/farmacología , Animales , Línea Celular Tumoral , Citoprotección/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Sustancias Protectoras/farmacología , Ratas , Silibina/química , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA